Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-22T16:09:53.589Z Has data issue: false hasContentIssue false

Positron Emission Tomography of in-vivo Binding Characteristics of Atypical Antipsychotic Drugs

Review of D2 and 5-HT2 Receptor Occupancy Studies and Clinical Response

Published online by Cambridge University Press:  06 August 2018

Svante Nyberg*
Affiliation:
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
Yoshifumi Nakashima
Affiliation:
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
Anna-Lena Nordström
Affiliation:
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
Christer Halldin
Affiliation:
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
Lars Farde
Affiliation:
Department of Clinical Neuroscience, Karolinska Hospital, Stockholm, Sweden
*
Dr Svante Nyberg, Department of Clinical Neuroscience, Psychiatry and Psychology Section, Karolinska Institute, Karolinska Hospital, S-171 76 Stockholm, Sweden

Extract

Several types of neuroreceptors are of interest with respect to antipsychotic activity, in particular the D2, D1, and 5-HT2 receptors. Among currently prescribed antipsychotic drugs, some have an affinity for a broad range of neuroreceptors, while others are more selective for the D2 receptor (Hytell et al, 1985). The most widely accepted hypothesis of neuroleptic drug action is that antipsychotic effects are mediated by a blockade of the dopamine receptors (Carlsson & Lindqvist, 1963; van Rossum, 1966; Creese et al, 1976; Seeman et al, 1976; Peroutka & Snyder, 1980). This hypothesis has been supported by consistent findings of high D2 receptor occupancy in positron emission tomography (PET) studies of patients treated with antipsychotic drugs (Farde et al, 1986; Smith et al, 1988; Baron et al, 1989). At the same time, the risk of extrapyramidal side-effects (EPS) seems particularly high in patients with occupancy above 80% (Farde et al, 1992) (Fig. 1).

Type
Research Article
Copyright
Copyright © 1996 The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsara, J. J., Jadhav, J. H. & Chandorkar, A. G. (1979) Effect of drugs influencing central serotonergic mechanisms on haloperidol-induced catalepsy. Psychopharmacology, 62, 6769.CrossRefGoogle ScholarPubMed
Baron, J. C., Martinot, J. L., Cambon, H., et al (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology, 99, 463472.Google Scholar
Bersani, G., Grispini, A., Marini, S., et al (1990) 5-HT2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clinical Neuropharmacology, 13, 500506.Google Scholar
Carlsson, A. & Lindqvist, M. (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica, 20, 140144.Google Scholar
Ceulemans, D. L. S., Gelders, Y. G., Hoppenbrouwers, M.-L. J. A., et al (1985) Effect of serotonin antagonism in schizophrenia: a pilot study with setoperone. Psychopharmacology, 85, 329332.Google Scholar
Claus, A., Bollen, J., De Cuyper, H., et al (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatrica Scandinavica, 85, 295305.Google Scholar
Costall, B., Fortune, D. H., Naylor, R. J., et al (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology, 14, 859868.Google Scholar
Creese, I., Burt, D. R. & Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science, 192, 481483.Google Scholar
Farde, L., Hall, H., Ehrin, E., et al (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science, 231, 258261.Google Scholar
Farde, L., Wiesel, F.-A., Nordström, A.-L., et al (1989a) D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology, 99, S28S31.Google Scholar
Farde, L., Eriksson, L., Blomquist, G., et al (1989b) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studies by PET – a comparison to the equilibrium analysis. Journal of Cerebral Blood Flow Metabolism, 9, 696708.Google Scholar
Farde, L., Wiesel, F.-A., Stone-Elander, S., et al (1990) D2 dopamine receptors in neuroleptic-naïve schizophrenic patients. Archives of General Psychiatry, 47, 213219.Google Scholar
Farde, L., Nordström, A.-L., Wiesel, F.-A., et al (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Archives of General Psychiatry, 49, 538544.Google Scholar
Gelders, Y., Vanden Bussche, G., Reyntjens, A., et al (1986) Serotonin-S2 receptor blockers in the treatment of chronic schizophrenia. Clinical Neuropharmacology, 9 (suppl. 4), S325–S327.Google Scholar
Gerlach, J. (1991) New antipsychotics: classification, efficacy, and adverse effects. Schizophrenia Bulletin, 17, 289309.Google Scholar
Halldin, C., Farde, L., Högberg, T., et al (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides. Preparation and in vitro dopamine D2 binding. Nuclear Medicine Biology, 18, 871881.Google Scholar
Hicks, P. B. (1990) The effect of serotonergic agents on haloperidol-induced catalepsy. Life Sciences, 47, 16091615.Google Scholar
Hytell, J., Larsen, J. J., Christensen, A. V., et al (1985) Receptor-binding profiles of neuroleptics. In Dyskinesia: Research and Treatment (eds Casey, D. E., Chase, T. N. & Christensen, A. V.), pp. 918. New York: Springer.Google Scholar
Kane, J., Honigfeld, G., Singer, J., et al (1988) Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Archives of General Psychiatry, 45, 789796.Google Scholar
Korsgaard, S., Gerlach, J. & Christensson, E. (1985) Behavioural aspects of serotonin–dopamine interaction in the monkey. European Journal of Pharmacology, 118, 245252.Google Scholar
Kostowski, W., Gumulka, W. & Czlonkowski, A. (1972) Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphe and treated with p-chlorophenylalinine. Brain Research, 48, 443446.Google Scholar
Leysen, J. E., Gommeren, W., Eens, A., et al (1988) Biochemical profile of risperidone, a new antipsychotic. Journal of Pharmacology and Experimental Therapeutics, 247, 661670.Google Scholar
Lieberman, J. A. (1994) Understanding the mechanism of action of atypical antipsychotic drugs. A review of compounds in use and development. British Journal of Psychiatry, 163 (suppl. 22), 718.Google Scholar
Litton, J., Bergström, K., Eriksson, L., et al (1984) Performance study of the PC-384 positron camera system for emission tomography of the brain. Computer Assisted Tomography, 8, 7487.Google Scholar
Litton, J., Holte, S. & Eriksson, L. (1990) Evaluation of the Karolinska new positron camera system: the Scanditronix PC2048-156B. IEEE Transmission on Nuclear Science, 37, 743748.Google Scholar
Marder, S. R. (1992) Risperidone: clinical development: North American results. Clinical Neuropharmacology, 15 (suppl. 1, Pt A), 92A.Google Scholar
Marder, S. R. & Meibach, R. C. (1994) Risperidone in the treatment of schizophrenia. American Journal of Psychiatry, 151, 825835.Google Scholar
Meltzer, H. Y. (1991) The mechanism of action of novel antipsychotic drugs. Schizophrenia Bulletin, 17, 263287.Google Scholar
Meltzer, H. Y., Matsubara, S. & Lee, J.-C. (1989) The ratios of serotonin-2 and dopamine-2 affinities differentiate atypical and typical antipsychotic drugs. Psychopharmacology Bulletin 25, 390392.Google Scholar
Mizuki, Y., Kajamura, N., Imai, T., et al (1990) Effects of mianserin on negative symptoms in schizophrenia. International Journal of Clinical Psychopharmacology, 5, 8395.Google Scholar
Müller-Spahn, F. (1992) Risperidone in the treatment of chronic schizophrenic patients: an international double-blind parallel-group study versus haloperidol. Clinical Neuropharmacology, 15 (suppl. 1, Pt A), 90A.Google Scholar
Nordström, A.-L. (1993) PET Evaluation of Dopamine Hypothesis for Antipsychotic Drugs and Schizophrenia. Department of Psychiatry and Psychology, Karolinska Insitute, Stockholm, Sweden.Google Scholar
Nordström, A.-L., Farde, L., Pauli, S., et al (1992) PET analysis of central [11C]raclopride binding in healthy young adults and schizophrenic patients – reliability and age effects. Human Psychopharmacology, 7, 157165.CrossRefGoogle Scholar
Nordström, A.-L., Farde, L. & Halldin, C. (1993) High 5-HT2 receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology, 110, 365367.Google Scholar
Nyberg, S., Farde, L., Eriksson, L., et al (1993) 5-HT2 and D2 dopamine receptor occupancy in the living human brain: a PET study with risperidone. Psychopharmacology, 110, 265272.Google Scholar
Peroutka, S. J. & Snyder, S. H. (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, α-adrenergic, and histamine receptors to clinical potency. American Journal of Psychiatry, 137, 15181522.Google Scholar
Reyntjens, A., Gelders, Y. G., Hoppenbrouwers, M.-L. J. A., et al (1986) Thymosthenic effects of ritanserin (R 55667), a centrally acting serotonin-S2 receptor blocker. Drug Development Research, 8, 205211.Google Scholar
Seeman, P., Lee, T., Chau-Wong, M., et al (1976) Antipsychotic drug doses and neuroleptic/dopamine receptor. Nature, 261, 717719.Google Scholar
Silver, H, & Nassar, A. (1992) Fluvoxamine improves negative symptoms in treated chronic schizophrenia: an add-on double-blind, placebo-controlled study. Biological Psychiatry, 31, 698704.Google Scholar
Silver, H, Blacker, M., Weller, M. P. I., et al (1989) Treatment of chronic schizophrenia with cyproheptadine. Biological Psychiatry, 25, 502504.Google Scholar
Smith, M., Wolf, A. P., Brodie, J. D., et al (1988) Serial [18F]N-methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biological Psychiatry, 23, 653663.Google Scholar
Trichard, C., Paillère-Martinot, M. L., Monfort, J. C., et al (1992) Cortical 5-HT2 receptors and antipsychotic drugs studied with PET in schizophrenia: preliminary results. (Proceedings of the AEP sixth European Congress, Barcelona, November 3–7). Anales de Psiquiatria, 8 (suppl. 1), 9.Google Scholar
van Rossum, J. M. (1966) The significance of dopamine receptor blockade for the mechanism of action of neuroleptic drugs. Archives Internationales de Pharmacodynamic et de Thérapie, 160, 492494.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.