Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T12:54:17.921Z Has data issue: false hasContentIssue false

Patterns of Peptides and Protein-Associated-Peptide Complexes in Psychiatric Disorders

Published online by Cambridge University Press:  29 January 2018

O. E. Trygstad
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
K. L. Reichelt*
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
I. Foss
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
P. D. Edminson
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
G. Saelid
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
J. Bremer
Affiliation:
Gaustad Hospital, University of Oslo, Oslo, Norway
K. Hole
Affiliation:
Department of Physiology, University of Bergen, Bergen, Norway
H. Ørbeck
Affiliation:
Institute of Pediatric Research, Rikshospitalet, University Hospital, Oslo 1, Norway
J. H. Johansen
Affiliation:
Department of Chemistry, University of Oslo, Blindern, Norway
J. B. B⊘ler
Affiliation:
Department of Chemistry, University of Oslo, Blindern, Norway
K. Titlestad
Affiliation:
Department of Chemistry, University of Oslo, Blindern, Norway
P. K. Opstad
Affiliation:
Norwegian Defence Research Establishment, Kjeller, Norway
*
Address for correspondence.

Summary

Peptidic neurones may be considered as multisignal integrators and transducers. When formation or release of peptide outstrips genetically determined breakdown capacity, overflow of peptides to the body fluids and urine may be expected. In this paper, pathological urinary chromatographic patterns of peptides are shown for genetic, functional and mixed disorders. Part symptoms of the disorders may be induced with the biologically isolated and purified peptides as well as with chemically synthesized peptides.

Type
Papers
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aakvaag, A., Bentdal, Ø., Quigstad, K., Walstad, P., R⊘nningen, H. & Fonnum, F. (1978) Testosterone and testosterone binding globulin (TeBG) in Young men during prolonged stress. International Journal of Andrology, 1, 2231.Google Scholar
Arabella, S. & Langen, S. Z. (1978) Morphine and β-endorphin inhibit release of noradrenaline from cerebral cortex but not of dopamine from rat striatum. Nature, 271, 559–60.Google Scholar
Asatoor, A. M., Milne, M. D. & Walshe, J. M. (1976) Urinary excretion of peptides and hydroxyproline in Wilson's disease. Clinical Science and Molecular Medicine, 51, 369–78.Google Scholar
Barker, J. C. & Gainer, H. (1974) Peptide regulation of bursting pacemaker activity in a molluscan neurosecretory cell. Science, 184, 1371–3.Google Scholar
Barker, J. C., Neal, J. H., Smith, T. & MacDonald, R. L. (1978) Opiate peptide modulation of amino acid responses suggests novel form of neuronal communication. Science, 199, 1451–3.Google Scholar
Barry, J. (1977) Immunofluorescence study of LRF neurones in man. Cell and Tissue Research, 181, 114.Google Scholar
Beamish, P. & Kiloh, L. G. (1960) Psychosis due to amphetamine consumption. Journal of Mental Science, 106, 337–43.Google Scholar
Bergen, J. R., Gray, F. W., Punnell, R. B. (1965) Tarexein-like extracts. Effects of rat behaviour. Archives of General Psychiatry, 12, 80–2.Google Scholar
Bohus, B., Urban, I., Van Wimersha Greidanus, Tj.B. & De Wied, D. (1978) Opposite effects of oxytocin and vasopressin on avoidance behaviour and hippocampal theta rhythm in the rat. Neuropharmacology, 17, 239–47.CrossRefGoogle ScholarPubMed
Buckalew, L. W. (1973) Relationship between a physiological and personality index of exciteability. Physiological Reviews, 1, 158–60.Google Scholar
Burzynski, S. R., Leo, T. L., Ho, D. G., Rao, P. N., Georgiades, G. & Kratzenstein, H. (1976) Biologically active peptides in human urine. Three. Inhibitors of growth of human leukemia, oesteosarcoma and hela cells. Physiological Chemistry and Physics, 8, 1322.Google Scholar
Carlsson, A. (1978) Does dopamine have a role in schizophrenia? Biological Psychiatry, 13, 321.Google Scholar
Carrel, B. J. y Mendels, J. (1976) Neuroendocrine regulation in effective disorders in Hormones, Behaviour and Psychopathology (Editor: Sachar, E. J.), New York: Raven Press, 193224.Google Scholar
Clement-Cornier, Y. C., Kebabaian, J. W., Petzold, G. L. & Greengard, P. (1974) Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proceedings of National Academy of Sciences (US), 71, 1113–17.Google Scholar
Cohn, M. L. & Cohn, M. (1977) Comparison of the regulation of rotational behaviour by hypothalamic oligopeptides. Psychoneuroendocrinology, 2, 197202.Google Scholar
Creese, I., Bent, D. R. & Snyder, S. H. (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science, 192, 481483.Google Scholar
Dencker, S. J., Malm, U., Roos, B. E. & Wendinius, B. (1966) Acid monoamine metabolites of cerebrospinal fluid in mental depression and mania. Journal of Neurochemistry, 13, 1545–8.Google Scholar
De Wied, D. (1977) Peptides and behaviour. Life Sciences, 20, 195204.Google Scholar
Eysenck, H. J. (1976) In The Biological Basis of Personality, Springfield: C. C. Thomas.Google Scholar
Feighner, J. P., Robins, E., Guze, S. B., Woodruff, R. A., Winokur, G. & Munoz, R. (1972) Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry, 26, 5763.Google Scholar
Foss, I. & Trygstad, O. E. (1975) Lipodystrophy produced in mice and rabbits by a fraction prepared from the urine from patients with congenital generalized lipodystrophy. Acta Endocrinologica, 80, 398416.Google ScholarPubMed
Frohman, C. E., Czajkowski, N., Luby, E. D., Gottlieb, J. S. & Senf, R. (1960) Further evidence of a plasma factor in schizophrenia. Archives of General Psychiatry, 2, 263–7.Google Scholar
Gasson, G. G. & Gilles, F. (1973) Limbic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 36, 421–30.Google Scholar
Gersch, M. (1977) Informationsübermittlung mit Hilfe neurosekretorischer peptide als mediatoren. Naturwissenschaften, 64, 417–26.Google Scholar
Ghanshyam, N. P., Garver, D. L., Taminga, C., Erichsen, S., Syed, I. A. & Davis, J. M. (1977) Postsynaptic supersensitivity in schizophrenia. American Journal of Psychiatry, 134, 518–22.Google Scholar
Gispen, W. H., Wiegant, V. M., Greven, J. M. & De Wied, D. (1975) The induction of excessive grooming in the rat by intraventricular application of peptide derived from ACTH: Structure activity studies. Life Sciences, 17, 645–52.Google Scholar
Goldman, D. (1969) Schizophrenia and its improvement: Necessary and sufficient conditions for the diagnosis of schizophrenia: in criteria for improvement in Schizoohrenia. (Ed. Sankar, D. V. S.). New York: P. J. O. Publications, 7083.Google Scholar
Goldsmith, P. C. (1977) Ultrastructural localization of some hypothalmic hormones. Federation Proceedings, 36, 1968–72.Google Scholar
Gregory, H. & Willshire, I. R. (1975) The isolation of the urogastrones—inhibitors of gastric secretion from human urine. Hoppe Seylers Zeitschrift für Physiologisches Chemie, 356, 1765–74.Google Scholar
Griffiths, E. C., Hooper, K. C., Jeffcoate, S. L. & Holland, D. T. (1975) The effect of gonadectomy and gonadal steroids on the activity of hypothalamic peptidases inactivating luteinizing hormone-releasing hormone (LHRH). Brain Research, 88, 384–8.Google Scholar
Gross, S., Gallicka, N., Burzynski, S. R., Stolzmann, Z. (1976) Urinary peptides in muscular dystrophy. Studies on chick embryo fibroblast cultures. Physiological Chemistry and Physics, 8, 161–5.Google Scholar
Guillemin, R. (1978) Biochemical and physiological correlates of hypothalamic peptides. The new endocrinology of the neuron in The Hypothalamus (Reichlin, S., Beldessarini, R. J. & Martin, J. B. eds.). New York: Raven Press, 155–94.Google Scholar
Hagen, T. C., Lawrence, A. M. & Kirsteins, L. (1972) In vitro release of monkey growth hormone by acromegalic plasma. Journal of Clinical Endocrinology and Metabolism, 33, 448–51.Google Scholar
Harminson, C. R. & Frohman, C. E. (1972) Conformational variation in a human plasma lipoprotein. Biochemistry, 11, 4985–92.Google Scholar
Heath, R. & Krupp, I. M. (1968) Schizophrenia as a specific biologic disease. American Journal of Psychiatry, 124, 1019–24.Google Scholar
Heston, L. L. (1966) Psychiatric disorders in foster home reared children of schizophrenic mothers. British Journal of Psychiatry, 112, 809–25.Google Scholar
H⊘kfelt, T., Elde, R., Fuxe, K., Johansson, O., Ljungdahl, A., Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., Said, S., Perez de la Mora, M., Possani, L., Tapia, R., Teran, L. & Placios, R. (1978) Aminergic and peptidergic pathways in The Hypothalamus (Reichlin, S., Baldessarini, R. J. & Martin, J. B., eds.). New York: Raven Press, 69135.Google Scholar
Ifshin, M. S., Gainer, H. & Barker, J. C. (1975) Peptide factor extracted from mulluscan ganglia that modulates bursting pacemaker activity. Nature, 254, 7272.Google Scholar
Kallman, F. J. (1946) The genetic theory of schizophrenia. An analysis of 691 schizophrenic twin index families. American Journal of Psychiatry, 103, 309–22.Google Scholar
Kanner, L. (1958) The specificity of early infantile autism. Zeitschrift für Kinderpsychiatrie, 25, 108–13.Google Scholar
Kl⊘ve, H. & Hole, K. (1979) The hyperkinetic syndrome: Criteria for diagnosis, in Hyperactivity in Children, (Trites, R. L. ed.) Baltimore: University Park Press, in press.Google Scholar
Kornetsky, C. & Mirsky, A. F. (1966) On certain pharmacological physiological differences between schizophrenics and normal persons. Psychopharmacologia (Berl.), 8, 309–18Google Scholar
Kringlen, E. (1964) Schizophrenia in male monozygotic twins. Acta Psychiatrica Scandinavian Supplement, 178, 176.Google Scholar
Kruse, H., Van Wimmersma-Greidanus, Tj. & De Wied, D. (1977) Barrel rotation induced by vasopressin and related peptides in rats. Pharmacology and Biochemistry of Behaviour, 5, 665–69.Google Scholar
Lake, C. R., Ziegler, M. G. & Murphy, D. L. (1977) Increased norepinephrine levels and decreased dopamine-hydroxylase activity in primary autism. Archives of General Psychiatry, 34, 553–6.Google Scholar
Langfeldt, G. (1939) The Schizophreniform States. London: Oxford University Press.Google Scholar
Lederis, R. (1974) Chemical and pharmacological properties of urotensin. 1. A long acting mammalian hypotensive peptide. Acta Physiologica Latinamericana, 24, 481–3.Google Scholar
Legros, J. L. (1978) Urinary excretion of neurophysins in patients with kidney disease. Journal of Endocrinology, 76, 411–5.Google Scholar
Lehnhoff, H. M. (1968) Behaviour, hormones and hydra. Science, 161, 434–42.Google Scholar
Levitan, I. B. & Treistman, M. (1977) Modulation of electrical activity and cyclic nucleotide metabolism in molluscan nervous system by a peptide-containing nervous system extract. Brain Research, 136, 307–17.Google Scholar
Malarkey, U. B. & Pankratz, K. M. (1975) Evidence for prolactin releasing activity (PRA) in human plasma not associated with TSH release. Clinical Research, 22, 600A.Google Scholar
Malmo, R. A. (1959) Activation: a neuropsychological dimension. Psychological Review, 66, 367–86.Google Scholar
Margolin, D. I. (1978) The hyperkinetic child syndrome and brain monoamines: pharmacology and therapeutic implications. Journal of Clinical Psychiatry, 39, 120–30.Google ScholarPubMed
Matsuda, Y., Miyazaki, K., Moriya, H., Fujimoto, Y., Hojima, Y. & Moriwaki, C. (1976) Studies on urinary kallikreins. Purification and characterization of human urinary kallikreins. Journal of Biochemistry (Japan), 80, 671–80.Google ScholarPubMed
McDonald, R. L. (1974) Iatrogenic amphetamine psychosis. American Journal of Psychiatry, 120, 1200–1.Google Scholar
Moroni, R., Cheney, D. L. & Costa, E. (1977) Inhibition of acetylcholine turnover in rat hippocampus by intraseptal injections of beta-endorphin and morphine. Naunyn-Schmiedeberg's Archiv für Pharmacologie, 299, 149–53.Google Scholar
Moss, R. I. & Foreman, M. M. (1976) Potentiation of Lordosis behaviour by intrahypothalmic infusion of synthetic luteinizing hormone releasing hormone. Neuroendocrinology, 20, 176–81.Google Scholar
Motumatso, T., Lis, M., Seidah, N. & Chretien, M. (1977) Inhibition by beta-endorphin of Dopamine sensitive adenylate cyclase in rat striatum. Biochemical Biophysical Research Communications, 77, 442–7.Google Scholar
Murphy, D. L., Campbell, I. C. & Costa, J. L. (1978) The brain serotonergic system in the affective disorders. Progress in Neuro-psychopharmacology, 2, 131.Google Scholar
Nygaard, J. A. (1977) Hyperaktive barn med god prognose (Kramer-Poolnow's hyperkinetiske syndrome). Sandoz Inform., 115.Google Scholar
Ornitz, E. M. & Ritvo, E. R. (1976) The syndrome of autism: A critical review. American Journal of Psychiatry, 133, 651–64.Google Scholar
Palmer, G. L. & Marion, A. A. (1974) Inhibition of the catalytic site of adenylate cyclase in the central nervous system by phenothiazine derivates. Neuropharmacology, 13, 651–64.Google Scholar
Rasmussen, E. W. & H⊘stmark, A. T. (1978) Age-related changes in the concentration of plasma cholesterol and triglycerides in two groups of rats with inherited widely different of sponteneous physical activity. Circulation Research, 42, 598603.Google Scholar
Reichelt, K. L. & Edminson, P. D. (1976) Transmitter dependent peptide synthesis in the central nervous system. Advances in Biochemical Psychopharmacology, 15, 211–23.Google Scholar
Reichelt, K. L. & Edminson, P. D. (1977) Peptides containing probable transmitter candidates in the central nervous system in Peptides in Neurobiology. Ed. Gainer, H.). New York: Plenum Press, 171–81.Google Scholar
Reichelt, K. L., Foss, I., Trygstad, O. E., Edminson, P. D., Johansen, J. H. & B⊘ler, J. B. (1978a) Humoral control of appetite. II. Purification and characterization of an anrexogenic peptide from human urine. Neuroscience, 3, 1207–11.Google Scholar
Reichelt, K. L., Trygstad, O. E., Foss, I. & Johansen, J. H. (1978b): Peptides in congenital generalized lipodystrophy. The isolation of an aggression inducing peptide. The Psychopharmacology of Aggression. (Eds. Hunt, B. and Sandler, M.). New York: Raven Press, in press.Google Scholar
Reichun, S., Saperstein, R., Jackson, I. M. D., Boyd, A. E. & Patel, Y. (1976) Hypothalamic hormones. Annual Review of Physiology, 38, 389424.CrossRefGoogle Scholar
Rimland, B. (1971) The differentiation of childhood psychosis: Analysis of checklists for 2218 psychotic children. Journal of Autism and Child Schizophrenia, 1, 161–74.Google Scholar
Rosenthal, D., Wender, P. & Kety, S. (1971) The adopted-away offspring of schizophrenics. American Journal Psychiatry, 128, 307–11.Google Scholar
Sandman, C. A., George, J., McCanne, T. R., Nolan, J. D., Kaswan, J. & Kastin, A. J. (1977) MSH/ACTH 4–10 influences behavioural and psysiological measures of attention. Journal Clinical Endocrinology and Metabolism, 44, 884–91.Google Scholar
Sardesai, V. M., Ward, V., Provido, H. & Frohman, C. E. (1977) The effect of schizophrenic factor on liver tryptophan oxygenase. Communications in Psychopharmacology, 1, 439–46.Google Scholar
Schally, A. V., Arimura, A. & Kastin, A. J. (1973) Hypothalamic regulatory hormones. Science, 179, 341–50.Google Scholar
Schildkraut, J. D. (1965) The catecholamine hypothesis of affective disorder: A review of supporting evidence. American Journal of Psychiatry, 122, 509–22.Google Scholar
Schoenenberger, G. H. & Monnier, M. (1977) Characterization of a delta electroencephalogram (sleep) inducing peptide. Proceedings of the National Academy of Sciences, 74, 1282–6.Google Scholar
Schuckit, M. A., Petrich, J. & Chiles, J. (1978) Hyperactivity: diagnostic confusion. Journal of Nervous and Mental Disease, 166, 7987.Google Scholar
Schulz, R. & Wüster, M. (1977) Renal excretion of endogeneous opoids. European Journal of Pharmacology, 43, 383–84.CrossRefGoogle Scholar
Seeman, P. & Lee, T. (1975) Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurones. Science, 188, 1217–19.Google Scholar
Shaywitz, S. E., Cohen, D. J. & Shaywitz, B. A. (1978) The biochemical basis of minimal brain dysfunction. Journal of Pediatrics, 92, 179–87.Google Scholar
Sivaganian, R. P. S. & Hook, H. A. (1977) Mechanism of histamine release by formyl-methionine containing peptides. Journal of Immunology, 119, 2078–83.Google Scholar
Stenstedt, A. (1952) A study in manic depressive psychosis. Acta Psychiatrica and Neurologica Scandinavia Supplement 79.Google Scholar
Tardy, M. & Rolland, B. (1978) Action of homocarnosine, carnosine and anserine on uptake and metabolism of GABA in different subcellular fractions of rat brain. Experientia, 34, 823–4.Google Scholar
Taylor, K. M. (1974) Displacement of bound 14-C-fluphenazine by biogenic amines and antipsychotic drugs in homogenates of brain tissue. Nature, 252, 238–41.Google Scholar
Tienari, P. (1963) Psychiatric illnesses in identical twins. Acta Psychiatrica (Kbh.) Supplement 171.Google Scholar
Trygstad, O. E. & Foss, I. (1977) Congenital generalized lipodystrophy and experimental lipoatrophic diabetes in rabbits treated successfully with fenfluramine. Acta Endocrinologica, 85, 436–48.Google Scholar
Trygstad, O. E., Foss, I., Edminson, P. D., Johansen, J. H. & Reichelt, K. L. (1978) Humoral control of appetite. I. A urinary anorexogenic peptide. Chromatographic patterns of urinary peptides in anorexia nervosa. Acta Endocrinologica, 89, 196208.Google Scholar
Trygstad, O. E., Seip, M. & Oseid, S. (1977) Lipodystrophic diabetes treated with fenfluramine. International Journal of Obesity, 1, 287–92.Google Scholar
Ungar, G. (1974) Molecular coding of memory. Life Sciences, 14, 595664.Google Scholar
U'Prichard, D. C., Greenberg, D. A., Sheenan, P. P. & Snyder, S. H. (1978) Tricyclic antidepressants: Therapeutic properties and affinity for a noreadrenergic receptor binding sites in the brain. Science, 199, 197–8.Google Scholar
Urban, I. V. & De Wed, D. (1978) Neuropeptides: Effects on paradoxical sleep and theta rythm in rats. Pharmacology, Biochemistry and Behaviour, 8, 51–8.Google Scholar
Vale, W., Rivier, C., Brown, M., Leppaluoto, J., Ling, N., Monahan, M. & Rivier, J. (1976) Pharmacology of hypothalmic regulatory peptides. Clinical Endocrinology, 5, 2613–45.Google Scholar
Versteeg, D. H. G., Tanaka, M., Dekloet, E. R., Van Rees, J. M. & De Wied, D. (1978) Prolyl-leucyl-glycinamide (PLG): regional effects on a MPT induced catecholamine disappearance in rat brain. Brain Research, 143, 561–6.Google Scholar
Wagemaker, B. & Cade, R. (1977) The use of hemodialysis in chronic schizophrenia. American Journal of Psychiatry, 134, 684–5.Google Scholar
Walaas, O., Lingjaerde, O., L⊘ken, F. & Hundevadt, E. (1954) Effects of sera from schizophrenic patients on glucose utilization of isolated rat diaphragm. Scandinavian Journal of Clinical Laboratory Investigation, 6, 245–9.Google Scholar
Wood, D. R., Reinherr, F. W., Wender, P. W. & Johnson, G. E. (1976) Diagnosis and treatment of minimal brain dysfunction in adults. Archives of Surgery, 111, 1453–60.Google Scholar
Yarbrough, G. C. (1976) TRH potentiates excitatory actions of acetylcholine of cerebral neurones. Nature, 263, 523–4.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.