Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T07:54:53.709Z Has data issue: false hasContentIssue false

Neuronal Lipopigment: A Marker for Cognitive Impairment and Long-Term Effects of Psychotropic Drugs

Published online by Cambridge University Press:  02 January 2018

J. H. Dowson*
Affiliation:
Department of Psychiatry, University of Cambridge Clinical School, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ

Abstract

Lipopigment, identifiable in the fluorescence microscope, is thought to be cellular debris partly derived from free-radical-induced peroxidation of cellular constituents. The volume of neuronal lipopigment has been positively correlated with advancing age, Alzheimer dementia, and the neuronal ceroidoses, while various changes in neuronal lipopigment have been reported in association with the chronic administration of dihydroergotoxine, ethanol, phenytoin, centrophenoxine, and chlorpromazine. An increase in the volume of neuronal lipopigment may indicate increased functional activity of the cell, impaired removal of pigment or anoxia. Chronic administration of agents which can be correlated with decreased neuronal lipopigment in animal models might protect neuronal function against any adverse effects associated with (but not necessarily resulting from) lipopigment accumulation in normal ageing, anoxia, or certain degenerative diseases. Long-term studies of the prophylactic use of such agents, or of drugs which neutralise free radicals, may be indicated. Other clinical applications of such drugs may include protection against the effects of free radicals formed during periods of oxygen deprivation.

Type
Lecture
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badurska, B., Fidzianska, A. & Jedrzejowska, H. (1981) A dominant form of neuronal ceroid-lipofuscinosis. Journal of Neurology, 226, 205212.Google Scholar
Basson, A. B. K., Terblanche, S. E. & Oelofsen, W. (1982) A comparative study on the effects of ageing and training on the levels of lipofuscin in various tissues of the rat. Comparative Biochemical Physiology, 71, 369374.Google ScholarPubMed
Bernocchi, G., Bottiroli, G., Cavanna, O., et al (1983) Fluorescence histochemical patterns of Purkinje cell layer in rat cerebellum after long-term phenytoin administration. Basic and Applied Histochemistry, 27, 4553.Google Scholar
Bertoni-Freddari, C., Giuli, C. & Pieri, C. (1982) The effect of acute and chronic centrophenoxine treatment on the synaptic plasticity of old rats. Archives of Gerontology and Geriatrics, 1, 363373.Google Scholar
Boehme, D. H., Cottell, J. C., Leonberg, S. C., et al (1971) A dominant form of neuronal ceroid-lipofuscinosis. Brain, 94, 745760.CrossRefGoogle ScholarPubMed
Borges, M. M., Paula-Barbosa, M. M. & Volk, B. (1986) Chronic alcohol consumption induces lipofuscin deposition in the rat hippocampus. Neurobiology of Aging, 7, 347355.Google Scholar
Braak, H. & Goebel, H. N. (1979) Pigmentoarchitectonic pathology of the isocortex in juvenile neuronal ceroid-lipofuscinosis: axonal enlargements in layer IIIab and cell loss in layer V. Acta Neuropathologica, 46, 7983.Google Scholar
Brizzee, K. R. (1975) Ageing changes in relation to diseases of the nervous system. In Neurobiology of Ageing (eds Ordy J. M. & Brizzee K. R.). New York: Plenum Press.Google Scholar
Brizzee, K. R., Kaack, B. & Klara, P. (1975) Lipofuscin: intra and extraneuronal accumulation and regional distribution. In Neurobiology of Ageing (eds Ordy J. M. & Brizzee K. R.). New York: Plenum Press.Google Scholar
Brizzee, K. R. & Knox, C. (1980) The ageing process in the neurone. Advances in Experimental Medicine and Biology, 129, 198.Google Scholar
Chou, S. M. & Thompson, H. G. (1970) Electron microscopy of storage cytosomes in Kufs' disease. Archives of Neurology (Chicago), 23, 489501.Google Scholar
Constantinides, P., Harkey, M. & McLaury, D. (1986) Prevention of lipofuscin development in neurones by antioxidants. Virchows Archives, 409, 583593.CrossRefGoogle ScholarPubMed
Dam, M. (1970) Number of Purkinje's cells after diphenylhydantoin intoxication in pigs. Archives of Neurology, 22, 6467.Google Scholar
Dam, M. & Nielson, M. (1970) Purkinje's cells density after diphenylhydantoin intoxication in rats. Archives of Neurology, 23, 555557.Google Scholar
Del Cerro, M. P. & Snider, R. S. (1967) Studies on dilantin intoxication-1. Ultrastructural analogies with lipoidoses. Neurology, 17, 452466.CrossRefGoogle Scholar
Dom, R., Brucher, J. M., Ceuterick, C., et al (1979) Adult ceroid-lipofuscinosis (Kufs' disease) in two brothers. Acta Neuropathologica (Berlin), 45, 6772.Google Scholar
Dowson, J. H. (1962a) The evaluation of autofluorescence emission spectra derived from neuronal lipopigment. Journal of Microscopy, 128, 261270.Google Scholar
Dowson, J. H. (1982b) Neuronal lipofuscin accumulation in ageing and Alzheimer dementia: A pathogenic mechanism? British Journal of Psychiatry, 140, 142148.Google Scholar
Dowson, J. H. (1983) Autofluorescence emission spectra of neuronal lipopigment in a case of adult-onset ceroidosis (Kufs' disease). Acta Neuropathologica, 59, 241245.Google Scholar
Dowson, J. H. (1985) Quantitative studies on the effects of ageing, meclofenoxate, and dihydroergotoxine on intraneuronal lipopigment accumulation in the rat. Experimental Gerontology, 20, 333340.Google Scholar
Dowson, J. H. & Harris, S. J. (1981) Quantitative studies of the autofluorescence derived from neuronal lipofuscin. Journal of Microscopy, 123, 249258.Google Scholar
Dowson, J. H., Armstrong, D., Koppang, N., et al (1982) Autofluorescence emission spectra of neuronal lipopigment in animal and human ceroidoses (ceroid-lipofuscinoses). Acta Neuropathologica, 58, 152156.Google Scholar
Dowson, J. H. & Wilton-Cox, H. (1988) The effect of drugs on neuronal lipopigment. In Lipofuscin - 1987: State of the Art (ed. Zs-Nagy I.), pp 271288. Amsterdam: Elsevier Science Publishers.Google Scholar
Earnest, M. P., Heaton, R. K., Wilkinson, W. S., et al (1979) Cortical atrophy, ventricular enlargement and intellectual impairment in the aged. Neurology, 29, 11381143.Google Scholar
Freund, G. (1979) The effects of chronic alcohol and vitamin E consumption on ageing pigments and learning performance in mice. Life Science, 24, 145152.Google Scholar
Gedye, J. L., Exton-Smith, A. N. & Wedgewood, J. (1972) A method for measuring mental performance in the elderly and its use in a pilot clinical trial of meclofenoxate in organic dementia. Age and Ageing, 1, 7480.Google Scholar
Glees, P. & Spoerri, P. E. (1975) Centrophenoxin-induced dissolution and removal of lipofuscin: an electron microscopic study. Arzneimittel-Forschung, 25, 39.Google Scholar
Glick, R. & Bondareff, W. (1979) Loss of synapases in the cerebellar cortex of the senescent rat. Journal of Gerontology, 24, 818822.Google Scholar
Goebel, H. H., Pilz, H. & Gullotta, F. (1976) The protracted form of juvenile neuronal ceroid-lipofuscinosis. Acta Neuropathologica, 36, 393396.Google Scholar
Halliwell, B. & Gutteridge, J. M. C. (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet, i, 13961397.Google Scholar
Harris, S. J. & Dowson, J. H. (1982) Recall of a 10-word list in the assessment of dementia in the elderly. British Journal of Psychiatry, 141, 524527.Google Scholar
Harris, S. J. & Dowson, J. H. (1986) The effects of meclofenoxate on cognitive performance in elderly individuals with memory impairment: a placebo-controlled study. International Journal of Geriatric Psychiatry, 1, 9398.Google Scholar
Hittner, H. M. & Zeller, R. S. (1975) Ceroid-lipofuscinosis (Batten disease). Archives of Opthalmology, 93, 178183.Google Scholar
Hochschild, R. (1973) Effect of dimethylaminoethyl p-chlorophenoxyacetate on the life span of male Swiss Webster albino mice. Experimental Gerontology, 8, 177183.Google Scholar
Huber, F., Koberle, S., Prestele, H., et al (1986) Effects of long-term ergoloid mesylates (Hydergine) administration in healthy pensioners: 5 year results. Current Medical Research and Opinion, 10, 256279.Google Scholar
Izumi, K., Tominaga, H., Koja, T., et al (1986) Meclofenoxate therapy in tardive dyskinesia: a preliminary report. Biological Psychiatry, 21, 151160.Google Scholar
Johnson, E. M., Palmatier, M. A., Rydel, R. E., et al (1986) Species and structural specificity of the lipopigment accumulation and neuronal destruction induced by N (2-guanidinoethyl)-4-methyl-1,2,5,6-tetrahydropyridine. (Guanacline). Brain Research, 383, 100109.Google Scholar
Karnaukhov, U. N. (1972) On the nature and function of yellow aging pigment lipofuscin. Experimental Cell Research, 80, 479.Google Scholar
Katz, M. L. & Robison, W. G. (1983) Lipofuscin response to the ‘aging-reversal’ drug centrophenoxine in rat retinal pigment epithelium and frontal cortex. Journal of Gerontology, 38, 525531.Google Scholar
Katz, M. L. Robison, W. G., Herrmann, R. K., et al (1984) Lipofuscin accumulation resulting from senescence and vitamin E deficiency: spectral properties and tissue distribution. Mechanisms of Ageing and Development, 25, 149159.Google Scholar
Kent, S. (1976) Solving the riddle of lipofuscin origin may uncover clues to the ageing process. Geriatrics, May, 128137.Google Scholar
Kerenyi, T., Haranohy, L. & Huttner, I. (1968) Investigations on experimentally produced age-pigment in the nervous system. Experimental Gerontology, 3, 155158.Google Scholar
Kornfeld, M. (1972) Generalized lipofuscinosis (generalized Kufs' disease). Journal of Neuropathology and Experimental Neurology, 3, 608682.Google Scholar
Lowden, J. A., Callahan, J. W., Gravel, R. A., et al (1981) Type 2 GM1 gangliosidosis with long survival and neuronal ceroid lipofuscinosis. Neurology (NY), 31, 719724.Google Scholar
Ludwig-Festl, M., Grater, B. & Bayreuther, K. (1983) Meclofenoxate-induced increase in cell metabolic activities in normal diploid human glia cells in a stationary cell culture system. Arzneimittel-Forschung, 33, 495501.Google Scholar
Malamud, N. (1972) Neuropathology of organic brain syndromes associated with ageing. Advances in Behavioural Biology, 3, 6388.Google Scholar
Mann, D. M. A. & Yates, P. O. (1974) Lipoprotein pigments -their relationship to ageing in the human nervous system. Brain, 97, 481488.Google Scholar
Mann, D. M. A. Yates, P. O. & Barton, C. M. (1977) Cytophotometric mapping of neuronal changes in senile dementia. Journal of Neurology, Neurosurgery and Psychiatry, 40, 299302.Google Scholar
Mann, D. M. A. & Sinclair, K. G. A. (1978) The quantitative assessment of lipofuscin pigment, cytoplasmic RNA and nucleolar volume in senile dementia. Neuropathology and Applied Neurobiology, 4, 129135.Google Scholar
Mann, D. M. A., Yates, P. O. & Stamp, J. E. (1978) The relationship between lipofuscin pigment and ageing in the human nervous system. Journal of Neurological Sciences, 37, 8393.Google Scholar
Marcer, D. & Hopkins, S. M. (1977) The differential effects of meclofenoxate on memory loss in the elderly. Age and Ageing, 6, 123131.Google Scholar
McBrien, D. C. H. & Slater, T. F., (eds) (1982) Free Radicals, Lipid Peroxidation and Cancer. London: Academic Press.Google Scholar
McDonald, C. (1969) Clinical heterogeneity in senile dementia. British Journal of Psychiatry, 115, 267271.Google Scholar
Miyazaki, H., Nambu, K. & Hashimoto, M. (1976) Antianoxic effect of meclofenoxate related to its disposition. Chemical and Pharmacological Bulletin, 24, 822825.Google Scholar
Monaole, R. D. & Brody, H. (1974) The effects of age upon the main nucleus of the inferior olive in the human. Journal of Comparative Neurology, 155, 6166.Google Scholar
Nandy, K. (1978a) Lipofuscinogenesis in mice early treated with centrophenoxine. Mechanisms in Ageing and Development, 8, 131138.Google Scholar
Nandy, K. (1978b) Centrophenoxine: effects on ageing mammalian brain. Journal of the American Geriatrics Society, 26, 7481.Google Scholar
Nandy, K. & Schneider, F. H. (1978) Effects of hydergine on aging neuroblastoma cells in culture. Pharmacology, 16, 8892.Google Scholar
Ohtani, R. & Kawashima, S. (1983) Reduction of lipofuscin by centrophenoxine and chlorpromazine in the neurones of rat cerebral hemisphere in primary culture. Experimental Gerontology, 18, 105112.Google Scholar
Oldfors, A. & Sourander, P. (1981) Storage of lipofuscin in neurones in mucopolysaccheridoses. Acta Neuropathologica, 54, 287292.Google Scholar
Oliver, J. E. & Restell, M. (1967) Serial testing in assessing the effect of meclofenoxate on patients with memory defects. British Journal of Psychiatry, 113, 219222.CrossRefGoogle ScholarPubMed
Pallis, C. A., Duckett, S. & Pearce, A. G. E. (1967) Diffuse lipofuscinosis of the central nervous system. Neurology (NY), 17, 381395.CrossRefGoogle ScholarPubMed
Paoiorek, P. M. & Wyllie, M. G. (1980) The effects of drugs on cerebral cortex ATP levels in normal and hypoxic rats. British Journal of Pharmacology, 70, 9293.Google Scholar
Papafrangos, E. S. & Lyman, C. P. (1982) Lipofuscin accumulation and hibernation in the Turkish Hamster, Mesocricetus trandti. Journal of Gerontology, 37, 417421.Google Scholar
Pryor, W. A. (1982) Free radical biology: xenobiotics, cancer and aging. Annals of the New York Academy of Sciences, 393, 122.Google Scholar
Rapin, I., Suzuki, K. & Valsarnis, M. P. (1976) Adult (chronic) GM2 gangliosidosis. Archives of Neurology, 33, 120130.Google Scholar
Riga, S. & Riga, D. (1974) Effects of centrophenoxine on the lipofuscin pigments in the nervous system of old rats. Brain Research, 72, 265275.Google Scholar
Roy, D., Pathak, D. N. & Singh, R. (1983) Effects of centrophenoxine on the antioxidative enzymes in various regions of the aging rat brain. Experimental Gerontology, 18, 185197.Google Scholar
Rudra, D. N., Dickerson, J. W. T. & Walker, R. (1975) The effect of some antioxidants on lipofuscin accumulation in rat brain. Proceedings of the Nutrition Society, 34, 122.Google Scholar
Samorajski, T. & Rolsten, C. (1976) Chlorpromazine and ageing in the brain. Experimental Gerontology, 11, 141147.Google Scholar
Sandoz, P. & Meier-Ruge, W. (1977) Age-related loss of nerve cells from the human inferior olive, and unchanged volume of its grey matter. IRCS (International Research Communications System) Journal of Medical Sciences, 5, 376.Google Scholar
Scholtz, C. L. & Brown, A. (1978) Lipofuscin and transynaptic degeneration. Virchows Archives, 281, 3540.Google Scholar
Suzuki, Y., Furukawa, T., Hoogeuben, A., et al (1979) Adult type GM1 gangliosidosis: a complementation study on somatic hybrids. Brain Development, 1, 8386.Google Scholar
Tavares, M. A. & Paula-Barbosa, M. M. (1983) Lipofuscin granules in Purkinje cells after long-term alcohol consumption. Alcoholism: Clinical and Experimental Research, 7, 302306.CrossRefGoogle ScholarPubMed
Totaro, E. A., Pisanti, F. A., Continillo, A., et al (1985) Morphological evaluation of the lipofuscinolytic effect of acetylhomocysteine thiolactone. Archives of Gerontology and Geriatrics, 4, 6772.Google Scholar
Wechsler, D. (1958) The Measurement and Appraisal of Adult Intelligence, London: Balliere, Tindall and Cox.Google Scholar
West, C. D. (1979) A quantitative study of lipofuscin accumulation with age in normals and individuals with Down's syndrome, phenylketonuria, progeria and transneuronal atrophy. Journal of Comparative Neurology, 186, 109116.Google Scholar
Yamada, M. (1978) On the distribution of senile changes in the spinal cord. Folia Psychiatrica et Neurologica Japonica, 32, 249251.Google Scholar
Yesavage, J. A., Tinklenberg, J. R., Hollister, L. E., et al (1979) Vasodilators in senile dementias. Archives of General Psychiatry, 36, 220232.Google Scholar
Zeman, W. (1976) The neuronal ceroid-lipofuscinoses. In Progress in Neuropathology, Vol. III (ed. Zimmerman H. H.). New York, San Francisco, London: Grune and Stratton.Google Scholar
Zeman, W. & Hoffman, J. (1962) Juvenile and late forms of amaurotic idiocy in one family. Journal of Neurology, Neurosurgery and Psychiatry, 25, 352362.Google Scholar
Zs-Nagy, I., Pieri, C. & Del Moro, M. (1979) Effects of centrophenoxine on the monovalent electrolyte contents of the large brain cortical cells of old rats. Gerontology, 25, 94102.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.