Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T17:32:54.844Z Has data issue: false hasContentIssue false

Neuroendocrine Mechanisms and the Precipitation of Depression by Life Events

Published online by Cambridge University Press:  06 August 2018

Stuart Checkley*
Affiliation:
Institute of Psychiatry and Maudsley Hospital, De Crespigny Park, London SE5 8AF

Extract

It is now generally accepted that stressful life events and chronic difficulties can trigger the onset of depression in predisposed individuals. However, although much is known of the neurobiology of stress, few attempts have been made to provide a biological explanation for the mechanisms whereby life events might trigger depression. Enough is now known of the central control of hypothalamic pituitary adrenal (HPA) function and its response to stress to permit an examination of its role in the neurobiology of the triggering of depression by stress. This evidence is reviewed, and the proposal explored that stress triggers depression by a genomic action of corticosteroids.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Damluji, S. (1988) Adrenergic mechanisms in the control of corticotrophin secretion. Journal of Endocrinology, 119, 514.Google Scholar
Al-Damluji, S. & Rees, L. H. (1987) Effects of catecholamines on the secretion of adrenocorticotrophin (ACTH) in man. Journal of Clinical Pathology, 40, 10981107.CrossRefGoogle ScholarPubMed
Al-Damluji, S., Perry, L., Tomlin, S., et al (1987a) Alpha-adrenergic stimulation of corticotrophin secretion by a specific central mechanism in man. Neuroendocrinology, 45, 6876.CrossRefGoogle ScholarPubMed
Al-Damluji, S., Cunnah, D., Grossman, A., et al (1987b) Effect of adrenaline on basal and ovine corticotrophin-releasing factor-stimulated ACTH secretion in man. Journal of Endocrinology, 122, 145150.CrossRefGoogle Scholar
Al-Damluji, S., Cunnah, D., Perry, L., et al (1987c) The effect of alpha adrenergic manipulation on the 24-hour pattern of Cortisol secretion in man. Clinical Endocrinology, 26, 6166.Google Scholar
Al-Damluji, S., Iveson, T., Thomas, J. M., et al (1987d) Food-induced Cortisol secretion is mediated by central alpha-1 adrenoceptor modulation of pituitary ACTH secretion. Clinical Endocrinology, 26, 629636.Google Scholar
Al-Damluji, S., Bouloux, P., White, A., et al (1990) The role of alpha-2 adrenoceptors in the control of ACTH secretion: interaction with the opioid system. Neuroendocrinology, 51, 7678.Google Scholar
Al-Dujaili, E. A. S., Hope, J., Estivariz, F. E., et al (1981) Circulating human pituitary progamma-melanotropin enhances the adrenal response to ACTH. Nature, 291, 156158.CrossRefGoogle ScholarPubMed
Amsterdam, J. D., Winokur, A., Abelman, E., et al (1983) Cosynotropin (ACTH 1–24) stimulation test in depressed patients and healthy subjects. American Journal of Psychiatry, 140, 907909.Google ScholarPubMed
Amsterdam, J. D., Marinelli, D. L., Arger, P., et al (1987a) Assessment of adrenal gland volume by computed tomography in depressed patients and healthy volunteers: a pilot study. Psychiatry Research, 21, 189197.Google Scholar
Amsterdam, J. D., Maislin, G., Winokur, A., et al (1987b) Pituitary and adrenocortical responses to ovine corticotropin releasing hormone in depressed patients and healthy volunteers. Archives of General Psychiatry, 44, 775781.Google Scholar
Arimura, A., Schally, A. V. & Bowers, C. Y. (1969) Corticotropin-releasing activity of lysine vasopressin analogues. Endocrinology, 84, 579583.CrossRefGoogle ScholarPubMed
Asnis, G. M. & Leuus, C. Z. (1989) Cortisol secretion in psychiatric disorders. In The Handbook of Clinical Psychoneuroendocrinology (eds Nemeroff, C. B. & Loosen, P. T.). Chichester: Wiley.Google Scholar
Banki, C. M., Bisette, G., Arato, M., et al (1987) CSE corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. American Journal of Psychiatry, 144, 873877.Google Scholar
Bardeleben, U. Von., Holsboer, F., Stalla, G., et al (1985) Combined administration of human corticotropin-releasing factor and lysine vasopressin induces Cortisol escape from dexamethasone suppression in healthy subjects. Life Sciences, 37, 16131618.Google Scholar
Bearn, J. A., Fairhall, K. M., Robinson, I. C. A. F., et al (1989a) A novel neuroendocrine measure of central oestrogen receptor function in women of potential relevance to puerperal psychosis. Journal of Psychopharmacology, 3, 20P.Google Scholar
Bearn, J. A., Franey, C., Arendt, J., et al (1989b) A study of the effects of desipramine treatment alone and in combination with L-triiodothyronine on 6-sulphatoxymelatonin excretion in depressed patients. British Journal of Psychiatry, 155, 341347.Google Scholar
Beato, M. (1989) Gene regulation by steroid hormones. Cell, 56, 335344.Google Scholar
Bebbington, P. E. & McGuffin, P. (1989) Interactive models of depression: the evidence. In Depression, An Integrative Approach (eds Herbst, K. R. & Paykel, E. S.). Oxford: Heinemann Medical.Google Scholar
Britton, D. R., Koob, G. F. & Rivier, J. (1982) Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sciences, 31, 363367.CrossRefGoogle ScholarPubMed
Britton, K. T., Lee, G., Vale, W., et al (1986) Corticotropin releasing factors (CRF) receptor antagonist blocks activating and ‘anxiogenic’ actions of CRF in the rat. Brain Research, 363, 303306.Google Scholar
Britton, K. T. & Koob, G. F. (1988) Behavioural effects of corticotropin releasing factor. In The Hypothalamic Pituitary Adrenal Axis (eds Schatzberg, A. F. & Nemeroff, C. B.). New York: Raven Press.Google Scholar
Brockington, I. F., Kelly, A., Hall, P., et al (1988) Premenstrual relapse of puerperal psychosis. Journal of Affective Disorders, 14, 287292.CrossRefGoogle ScholarPubMed
Charlton, B. G., Ferrier, I. N. & Perry, R. H. (1987) Distribution of corticotropin-releasing factor-like immunoreactivity in human brain. Neuropeptides, 10, 329334.Google Scholar
Charlton, B. G., Ferrier, I. N., Leake, A., et al (1988) A multiple time-point study of N-terminal pro-opiomelanocortin in depression using a two-site recognition immunoradiometric assay. Clinical Endocrinology, 28, 165172.Google Scholar
Charlton, B. G., & Ferrier, I. N. (1989) Hypothalamo–pituitary–adrenal axis abnormalities in depression: a review and a model. Psychological Medicine, 19, 331336.CrossRefGoogle ScholarPubMed
Checkley, S. A. (1979) Corticosteroid and growth hormone responses to methylamphetamine in depressive illness. Psychological Medicine, 9, 107116.Google Scholar
Checkley, S. A., Corn, T., Glass, I. B., et al (1986) Neuroendocrine and other studies of the mechanism of action of antidepressant drugs. In Antidepressant Drugs and Receptor Functions (ed. Murphy, D. L.), pp. 126142. CIBA Foundation Symposium, 123. Chichester: Wiley.Google Scholar
Cohen, S.I. (1980) Cushing's syndrome: a psychiatric study of 29 patients. British Journal of Psychiatry, 136, 120124.Google Scholar
Cookson, J. (1982) Post-partum psychosis, dopamine and oestrogens. Lancet, ii, 672.CrossRefGoogle Scholar
Coppen, A., Whybrown, P. C., Noguera, R., et al (1972) The comparative antidepressant value of L-tryptophan and imipramine with and without attempted potentiation of liothyronine. Archives of General Psychiatry, 26, 234241.CrossRefGoogle ScholarPubMed
Crompton, M. R. & Ferrier, I. N. (1988) Corticotropin-releasing factor immunoreactivity in post-mortem brain from depressed suicides. Journal of Psychopharmacology, 2, 1318.Google Scholar
Cummings, S. & Seybold, V. (1988) Relationship of alpha-1 and alpha-2 adrenergic binding sites to regions of the paraventricular nucleus of the hypothalamus containing corticotropin-releasing factor and vasopressin neurons. Neuroendocrinology, 47, 523532.CrossRefGoogle ScholarPubMed
Cuneo, R. C., Livesey, J. H., Nicholls, M. G., et al (1987) Effects of alpha-1 adrenergic blockade on the hormonal response to hypoglycaemic stress in normal man. Clinical Endocrinology, 26, 18.CrossRefGoogle ScholarPubMed
Cushing, H. (1932) The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bulletin of the Johns Hopkins Hospital, 50, 137195.Google Scholar
Dallman, M. F., Engeland, W. C. & McBride, M. H. (1977) The neural regulation of compensatory adrenal growth. In ACTH and Related Peptides: Structure, Regulation and Action (eds Krieger, D. T. & Ganong, W. F.). New York: New York Academy of Sciences.Google Scholar
De Kloet, E. R. & Reul, J. M. H. M. (1987) Feedback action and tonic influence of corticosteroids on brain function. A concept arising from heterogeneity of brain receptor systems. Psychoneuroendocrinology, 12, 83105.Google Scholar
De Kloet, E. R., De Kock, S., Schild, V., et al (1988) Antiglucocorticoid RU 38486 attenuates retention of a behaviour and disinhibits the hypothalamic-pituitary and adrenal axis at different brain sites. Neuroendocrinology, 47, 109115.Google Scholar
De Souza, E. B. (1987) Corticotropin-releasing factor receptors in the rat central nervous system: characterisation and regional distribution. Journal of Neuroscience, 7, 88100.CrossRefGoogle ScholarPubMed
De Souza, E. B., Perrin, H. M., Insel, T., et al (1984) Corticotropin-releasing factor receptors in rat forebrain: autoradiographic identification. Science, 224, 14491450.Google Scholar
Feighner, J. P., King, L. J., Schuckit, M. A., et al (1972) Hormonal potentiation of imipramine and ECT in primary depression. American Journal of Psychiatry, 128, 12301238.Google Scholar
Ganong, W. F., Chalett, J., Jones, H., et al (1982) Further characterization of alpha-adrenergic receptors in brain that affect blood pressure and the secretion of ACTH, GH and renin in dogs. Endocrinologia Experimentalis, 16, 191205.Google ScholarPubMed
Gillies, G. E., Linton, E. A. & Lowry, P. J. (1982) Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature, 299, 355357.CrossRefGoogle ScholarPubMed
Gitlin, M. J., Weiner, H., Fairbanks, L., et al (1987) Failure of T3 to potentiate tricyclic antidepressant response. Journal of Affective Disorders, 13, 267272.Google Scholar
Gold, P. W., Crousos, G. P., Kellner, C., et al (1984) Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. American Journal of Psychiatry, 141, 619627.Google Scholar
Gold, P. W., Gwirtsman, H., Avgerinos, P. C., et al (1986) Abnormal hypothalamic–pituitary–adrenal function in anorexia nervosa. New England Journal of Medicine, 314, 13351342.Google Scholar
Gold, P. W., Kling, M. A., Demitrack, M. A., et al (1988) Clinical studies with corticotropin releasing hormone: implications for hypothalamic pituitary adrenal dysfunction in depression and related disorders. In Current Trends in Neuroendocrinology in Current Trends in Neuroendocrinology, Volume 8 (eds Ganten, D. & Pfaff, D.). Berlin: Springer Verlag.Google Scholar
Goodwin, F. K., Prange, A. J., Post, R. M., et al (1982) Potentiation of antidepressant effects by L-triiodothyronine in tricyclic nonresponders. American Journal of Psychiatry, 139, 3438.Google ScholarPubMed
Gray, J. A. (1987) The Psychology of Fear & Stress. Cambridge: Cambridge University Press.Google Scholar
Halbreich, U., Asnis, G. M., Shindledecker, R., et al (1985) Cortisol secretion in endogenous depression. I. Basal plasma levels. Archives of General Psychiatry, 42, 904908.Google Scholar
Haleem, D. J., Kennett, G. & Curzon, G. (1988) Adaptation of female rats to stress: shift to male pattern by inhibition of corticosterone synthesis. Brain Research, 458, 339347.Google Scholar
Hamilton, J. A. (1982) The identity of post-partum psychosis. In Motherhood & Mental Illness (eds Brockington, I. F. & Kumar, R.), pp. 117. London: Academic Press.Google Scholar
Harfstrand, A., Fuxe, K., Cintra, A., et al (1986) Glucocorticoid receptors immunoreactivity in monoaminergic neurones of rats brain. Proceedings of the National Academy of Sciences (USA), 83, 97799783.CrossRefGoogle Scholar
Holsboer, F., Gerken, A., Stalla, G. K., et al (1985a) ACTH, Cortisol and corticosterone output after ovine corticotropin-releasing factor challenging during depression and after recovery. Biological Psychiatry, 20, 276286.Google Scholar
Holsboer, F., Gerken, A., Stalla, G. K., et al (1985b) Blunted corticotropin and normal Cortisol response to corticotropin-releasing factor in depression. New England Journal of Medicine, 311, 1123.Google Scholar
Hunter, R., Dick, H., Christie, J. E., et al (1988) Lymphocyte glucocorticoid receptor binding in depression: normal values following recovery. Journal of Affective Disorders, 14, 155159.Google Scholar
Hurxthal, L. M. & O'Sullivan, J. D. (1959) Cushing's syndrome: clinical differential diagnosis and complications. Annals of Internal Medicine, 51, 116.Google ScholarPubMed
Jeffcoate, W. J., Silverstone, J. T., Edwards, C. W. R., et al (1979) Psychiatric manifestation of Cushing's syndrome: response to lowering of plasma Cortisol. Quarterly Journal of Medicine, 191, 465472.Google Scholar
Jones, M. T. & Hillhouse, E. W. (1977) Neurotransmitters control of corticotrophin-releasing factor in vitro. Annals of the New York Academy of Science, 297, 536558.Google Scholar
Jones, M. T. & Gillham, B. (1988) Factors involved in the regulation of adrenocorticotropic hormone/beta lipotropic hormone. Physiological Reviews, 68, 743818.Google Scholar
Kelly, W. F., Checkley, S. A. & Bender, D. A. (1980) Cushing's syndrome, tryptophan and depression. British Journal of Psychiatry, 136, 125132.Google Scholar
Kelly, W. F., Checkley, S. A. & Bender, D. A., et al (1983) Cushing's syndrome and depression – a prospective study of 26 patients. British Journal of Psychiatry, 142, 1619.Google Scholar
Kennett, G. A., Dickinson, S. L. & Curzon, G. (1985) Central serotonergic responses and behavioural adaptation to repeated immobilisation: the effect of the corticosterone synthesis inhibitor metyrapone. European Journal of Pharmacology, 119, 143152.Google Scholar
Kennett, G. A., Chaouloff, F., Marcou, M., et al (1986) Female rats are more vulnerable than males in an animal model of depression: the possible role of serotonin. Brain Research, 382, 416421.Google Scholar
Krahn, D. D., Gosnell, B. A., Grace, M., et al (1987) CRF antagonist partially reverses CRF and stress-induced effects on feeding. Brain Research Bulletin, 17, 285289.Google Scholar
Kramlinger, K. G., Peterson, G. C., Watson, P. K., et al (1985) Metyrapone for depression and delirium secondary to Cushing's syndrome. Psychosomatics, 26, 6771.Google Scholar
Leibowitz, S. F., Jhanwar-Uniyal, M., Dvorkin, B., et al (1982) Distribution of alpha-adrenergic, beta-adrenergic and dopaminergic receptors in discrete hypothalamic areas of rat. Brain Research, 233, 97114.Google Scholar
Leranth, Cs., Antoni, F. A. & Palkovits, M. (1983) Ultrastructural demonstration of ovine CRF-like immunoreactivity (oCRF-LI) in the rat hypothalamus: processes of magnocellular neurones establish membrane specialisations with parvocellular neurones containing oCRF-LI. Regulatory Peptides, 6, 179188.Google Scholar
Linkowski, P., Mendlewicz, J., Leclerq, R., et al (1985) The 24-hour profile of adrenocorticotropin and Cortisol on major depressive illness. Journal of Clinical Endocrinology & Metabolism, 61, 429438.Google Scholar
Liposits, Zs., Sherman, D., Phelix, C., et al (1986) A combined light and electron immunocytochemical method for the simultaneous localization of multiple tissue antigens. Histochemistry, 85, 95106.Google Scholar
Lowry, P. J. (1984) Pro-opiocortin: the multiple adrenal hormone precursor. Bioscience Reports, 4, 467482.Google Scholar
Lowry, P. J., Silas, I., McLean, C., et al (1983) Pro-gamma-melanocyte stimulating hormone cleavage in adrenal gland undergoing compensatory growth. Nature, 306, 7073.CrossRefGoogle ScholarPubMed
Lowy, M. T., Reder, A. T., Antel, J. P., et al (1984) Glucocorticoid resistance in depression: the dexamethasone suppression test and lymphocyte sensitivity to dexamethasone. American Journal of Psychiatry, 141, 13651367.Google Scholar
McEwen, B. S., De Kloet, E. R. & Rostene, W. (1980) Adrenal steroid receptors and actions in the nervous system. Physiological Reviews, 66, 11211188.Google Scholar
Millan, M. A., Jacobowitz, D. M., Hauger, R. L., et al (1986) Proceedings of the National Academy of Sciences (USA), 83, 19211925.Google Scholar
Milsom, S. R., Donald, R. A., Espiner, E. A., et al (1986) The effect of peripheral catecholamine concentrations on the pituitary–adrenal response to corticotropin releasing factor in man. Clinical Endocrinology, 25, 241246.Google Scholar
Nelson, D. H., Meakin, J. W., Denby, J. B., et al (1958) ACTH-producing tumor of the pituitary gland. New England Journal of Medicine, 259, 161164.Google Scholar
Nemeroff, C. B., Widerlow, E., Bisette, G., et al (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 13421344.Google Scholar
Nemeroff, C. B., Owens, M. J., Bisette, G., et al (1988) Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Archives of General Psychiatry, 45, 577579.Google Scholar
Owens, M. J. & Nemeroff, C. B. (1988) The neurobiology of corticotrophic releasing factor: implications for affective disorders. In The Hypothalamic-Pituitary-Adrenal Axis (eds Schatzberg, A. F. & Nemeroff, C. B.), pp. 136. New York: Raven Press.Google Scholar
Pfohl, B., Sherman, B., Schlechte, J., et al (1985) Pituitary/adrenal axis rhythm disturbances in psychiatric depression. Archives of General Psychiatry, 42, 897903.Google Scholar
Plotsky, M. M. (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of effect on adrenal corticoid release. American Journal of Physiology, 218, 16321641.Google Scholar
Porsolt, R., Le Pichon, M. & Jalfre, M. (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature, 266, 730732.Google Scholar
Prange, A. J., Wilson, I. C., Rabon, A. M., et al (1969) Enhancement of imipramine antidepressant activity by thyroid hormone. American Journal of Psychiatry, 126, 3950.Google Scholar
Price, L. H., Charney, D. S., Rubin, A. L., et al (1985) Alpha-2 adrenergic receptor function in depression. The Cortisol response to yohimbine. Archives of General Psychiatry, 43, 849858.Google Scholar
Ratka, A., Sutanto, W., Bloemers, M., et al (1989) On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology, 50, 117123.Google Scholar
Rees, L., Butler, P. W. P., Gosling, C., et al (1970) Adrenergic blockade and the corticosteroid and growth hormone responses to methylamphetamine. Nature, 228, 565566.Google Scholar
Reul, J. M. H. M. & De Kloet, E. R. (1985) Two-receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology, 117, 25052512.Google Scholar
Reul, J. M. H. M. & De Kloet, E. R. (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. Journal of Steroid Biochemistry, 24, 269272.Google Scholar
Reul, J. M. H. M., Van Der Bosch, F. R. & De Kloet, E. R. (1987) Relative occupancy of type I and type II corticosteroid receptors in rat brain following stress and dexamethazone treatment, functional implications. Journal of Endocrinology, 115, 459467.Google Scholar
Roy, A., Pickar, D., Paul, S., et al (1987) CSF corticotropin releasing hormone in depressed patients and normal control subjects. American Journal of Psychiatry, 144, 641645.Google ScholarPubMed
Roy-Byrne, P. P., Uhde, T., Post, R. M., et al (1986) Blunted ACTH responses to ovine CRH in panic-anxiety disorder. American Journal of Psychiatry, 143, 896899.Google Scholar
Rubin, R. T., Polan, R. E., Lesser, I. M., et al (1987) Neuroendocrine aspects of primary endogenous depression. Archives of General Psychiatry, 44, 328336.Google Scholar
Sawchenko, P. E. & Swanson, L. W. (1982) The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Research Reviews, 4, 275325.CrossRefGoogle Scholar
Schwartz, G., Halaris, A., Baxter, L., et al (1984) Normal thyroid function in desipramine nonresponders converted to responders by the addition of L-triiodothyronine. American Journal of Psychiatry, 141, 16141616.Google Scholar
Siever, L. J., Uhde, T. W., Jimerson, D. C., et al (1984) Plasma Cortisol responses to clonidine in depressed patients and controls. Evidence for a possible alteration in noradrenergic–neuroendocrine relationships. Archives of General Psychiatry, 41, 6368.Google Scholar
Silverman, A. J., Oldfield, B., Hou-Yu, A., et al (1985) The noradrenergic innervation of vasopressin neurons in the paraventricular nucleus of the hypothalamus: an ultrastructural study using radioautography and immunocytochemistry. Brain Research, 325, 215229.Google Scholar
Sladek, J. R. & Zimmerman, E. A. (1982) Simultaneous monoamine histofluorescence and neuropeptide immunocytochemistry: VI. Catecholamine innervation of vasopressin and oxytocin neurons in the rhesus monkey hypothalamus. Brain Research Bulletin, 9, 431440.Google Scholar
Sirinathsinghji, D. J. S., Rees, L. J., Rivier, J., et al (1983) Corticotropin-releasing factor is a potent inhibitor of sexual receptivity in the female rat. Nature, 305, 232235.Google Scholar
Spillane, J. D. (1951) Nervous and mental disorders in Cushing's syndrome. Brain, 74, 7295.Google Scholar
Sutton, R. E., Koob, G. F., Le Moal, M., et al (1982) Corticotropin-releasing factor produces behavioral activation in rats. Nature, 297, 331333.Google Scholar
Swanson, L. W., Sawchenko, P. E., Rivier, J., et al (1983) The organization of ovine corticotropin releasing factor (CRF)-immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology, 36, 165186.Google Scholar
Swanson, L. W., Sawchenko, P. E. & Lind, R. W. (1986) Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. Progress in Brain Research, 68, 169190.Google Scholar
Szafarczyk, A., Malaval, F., Laurent, A., et al (1987) Further evidence for a central stimulatory action of catecholamines or adrenocorticotropin release in the rat. Endocrinology, 121, 883892.Google Scholar
Trethowan, W. H. & Cobb, S. (1952) Neuropsychiatric aspects of Cushing's syndrome. Archives of Neurology & Psychiatry, 67, 283309.CrossRefGoogle ScholarPubMed
Tsutsui, S., Yamazaki, Y., Namba, T., et al (1979) Combined therapy of T3 and antidepressants in depression. Journal of International Medical Research, 7, 138146.Google Scholar
Vale, W., Spiess, J., Rivier, C., et al (1981) Characterization of a 41-residue hypothalamic peptide that stimulates secretion of corticotropin and beta endorphin. Science, 213, 13941397.Google Scholar
Vale, W., Vaughan, J., Smith, M., et al (1983) Effects of synthetic ovine corticotropin releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides and other substances on cultured corticotropic cells. Endocrinology, 113, 11211131.Google Scholar
Van Den Pol, A. N. & Tsujimoto, K. L. (1985) Neurotransmitters of the hypothalamic suprachiasmatic nucleus: immunocytochemical analysis of 25 neuronal antigens. Neuroscience, 15, 10491086.Google Scholar
Veldhuis, H. D., De Korte, C. C. M. M. & De Kloet, E. R. (1985) Glucocorticoids facilitate the retention of acquired immobility during forced swimming. European Journal of Pharmacology, 115, 211217.Google Scholar
Whalley, L. J., Borthwick, N., Copdlov, D., et al (1986) Glucocorticoid receptors and depression. British Medical Journal, 292, 859861.Google Scholar
Wheatley, D. (1972) Potentiation of amitryptyline by thyroid hormone. Archives of General Psychiatry, 26, 229233.Google Scholar
Whybrow, P., Brange, A. & Treadway, C. (1969) Mental changes accompanying thyroid gland dysfunction. Archives of General Psychiatry, 20, 4862.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.