Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T12:40:31.517Z Has data issue: false hasContentIssue false

Glucocorticoids, Transmitters and Stress

Published online by Cambridge University Press:  06 August 2018

C. Delbende
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
C. Delarue
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
H. Lefebvre
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
D. Tranchand Bunel
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
A. Szafarczyk
Affiliation:
Laboratoire de Neurobiologie Endocrinoiogique, CNRS URA 1197, Unité Affiliée à I'Inserm, Université de Montpellier 11, 34060 Montpellier, France
E. Mocaër
Affiliation:
Institut de Recherches Internationales Servier, 6 Place des Pléiades, 92415 Courbevoie Cedex, France
A. Kamoun
Affiliation:
Institut de Recherches Internationales Servier, 6 Place des Pléiades, 92415 Courbevoie Cedex, France
S. Jégou
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
H. Vaudry*
Affiliation:
Group de Recherche en Endocrinologie Moléculaire, CNRS URA 650, Unité Affiliée à I'Inserm, BP 118, Université de Rouen, 76134 Mont-Saint-Aignan Cedex, France
*
Correspondence

Extract

Many kinds of stress stimulate the neuroendocrine systems controlling catecholamine and glucocorticoid secretion. Stress-induced stimulation of CRF-containing neurons appears to be mediated by serotonergic, noradrenergic, and possibly other neuronal pathways. Stress can alter various neurobiological and endocrine functions, two essential components of the neuroendocrine responses being release of adrenalin from chromaffin cells of the adrenal medulla and secretion of glucocorticoids from adrenocortical cells. Activation of adrenal steroid secretion is mainly by a reflex activation of hypothalamic neurons, which stimulate ACTH secretion from the anterior pituitary. While the neuropeptide CRF plays a major role in the neuroendocrine response to stress, the neuronal signals which are responsible for the regulation of CRF neurons have not been completely elucidated. A number of other regulatory substances may also participate, alone or with CRF, in the control of ACTH secretion by pituitary corticotrophs, and there is increasing evidence that classical neurotransmitters or neuropeptides may act directly on adrenocortical cells to modulate corticosteroid secretion. We review the neuronal, neuroendocrine, and humoral pathways which participate in the regulation of stress-induced corticosteroid secretion, and present preliminary data on the effect of the tricyclic antidepressant, tianeptine in the response of the HPA axis to stress.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnati, L. F., Fuxe, K., Yu, Z. U., et al (1985) Morphometrical analysis of the distribution of corticotropin-releasing factor, glucocorticoid receptor and phenylethanolamine-N-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neuroscience Letters, 54, 147152.Google Scholar
Albers, H. E., Ottenweller, J. E., Liou, S. Y., et al (1990) Neuropeptide Y in the hypothalamus: effect on corticosterone and single-unit activity. American Physiological Society, 258, R376R382.Google Scholar
Al-Damluji, S., Bouloux, P., White, A., et al (1990a) The role of alpha-2-adrenoceptors in the control of ACTH secretion; interaction with the opioid system. Neuroendocrinology, 51, 7681.Google Scholar
Al-Damluji, S., Thomas, R., White, A., et al (1990 b) Vasopressin mediates α1-adrenergic stimulation of adrenocorticotropin secretion. Endocrinology, 126, 19891995.Google Scholar
Al Dujaili, E. A. S., Boscaro, M. & Edwards, C. R. W. (1982) An in vitro stimulatory effect of indoleamines on aldosterone biosynthesis in the rat. Journal of Steroid Biochemistry, 17, 351356.Google Scholar
Alonso, G., Szafarczyk, A., Balmefrezol, M., et al (1986) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin-releasing hormone and vasopressin in rats. Brain Research, 397, 297307.Google Scholar
Alper, R. H. (1990) Evidence for central and peripheral serotonergic control of corticosterone secretion in the conscious rat. Neuroendocrinology, 51, 255260.Google Scholar
Arato, M., Banki, C. M., Nemeroff, C. B., et al (1986) Hypothalamic–pituitary–adrenal axis and suicide. Annals of the New York Academy of Sciences, 487, 263270.CrossRefGoogle ScholarPubMed
Ariyoshi, M. & Akasu, T. (1986) Glucocorticoid modulates the sensitivity of the GABAA receptor on primary afferent neurons of bullfrogs. Brain Research, 367, 332336.Google Scholar
Assenmacher, I., Szafarczyk, A., Alonso, G., et al (1987) Physiology of neural pathways affecting CRF secretion. Annals of the New York Academy of Sciences, 512, 149161.Google Scholar
Aulakh, C. S., Zohar, J., Wozniak, K. M., et al (1991) Differential effects of antidepressant treatments on fenfluramine-induced increases in plasma prolactin and corticosterone in rats. Pharmacology, Biochemistry and Behavior, 39, 9196.Google Scholar
Bagdy, G., Calogero, A. E., Murphy, D. L., et al (1989) Serotonin agonists cause parallel activation of the sympathoadrenomedullary system and the hypothalamo–pituitary–adrenocortical axis in conscious rats. Endocrinology, 125, 26642669.CrossRefGoogle ScholarPubMed
Bagdy, G., Calogero, A. E., Szemeredi, K., et al (1990) β-Endorphin responses to different serotonin agonists: involvement of corticotropin-releasing hormone, vasopressin and direct pituitary action. Brain Research, 537, 227232.Google Scholar
Balfour, D. J. K., Khullar, A. K. & Longden, A. (1975) Effects of nicotine on plasma corticosterone and brain amines in stressed and unstressed rats. Pharmacology, Biochemistry and Behavior, 3, 179184.Google Scholar
Banki, C. M., Bissette, G., Arato, M., et al (1987) Cerebrospinal fluid corticotropin-releasing factor-like immunoreactivity in depression and schizophrenia. American Journal of Psychiatry, 144, 873877.Google Scholar
Barbanel, G., Ixart, G. & Assenmacher, I. (1991) In vivo infusion of adrenaline stimulates corticotropin-releasing hormone producing neurons when given centrally but not distally. Journal of Neuroendocrinology, 3, 145148.Google Scholar
Bloom, F. E., Battenberg, E. L. F., Rivier, J., et al (1982) Corticotropin-releasing factor (CRF) immunoreactive neurons and fibers in rat hypothalamus. Regulatory Peptides, 4, 4348.CrossRefGoogle ScholarPubMed
Britton, D. R., Koob, G. F., Rivier, J., et al (1982) Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sciences, 31, 363367.Google Scholar
Britton, K. T., Lee, G., Dana, R., et al (1986) Activating and ‘anxiogenic’ effects of corticotropin-releasing factor are not inhibited by blockade of the pituitary–adrenal system with dexamethasone. Life Sciences, 39, 12811286.CrossRefGoogle Scholar
Brownfield, M. S., Poff, B. C. & Holzwarth, M. A. (1985) Ultrastructural immunocytochemical co-localization of serotonin and PNMT in adrenal medullary vesicles. Histochemistry, 83, 4146.Google Scholar
Bruhn, O., Plotsky, P. M. & Vale, W. W. (1984) Effect of paraventricular lesions on corticotropin-releasing factor (CRF)-like immunoreactivity in the stalk-median eminence: Studies in the adrenocorticotropin response to ether stress and exogenous CRF. Endocrinology, 114, 5762.Google Scholar
Calogero, A. E., Gallucci, W. T., Bernardini, R., et al (1988a) Effect of cholinergic agonists and antagonists on rat hypothalamic corticotropin-releasing hormone secretion in vitro. Neuroendocrinology, 47, 303308.Google Scholar
Calogero, A. E., Gallucci, W. T., Chrousos, G. P., et al (1988b) Interactions between GABAergic neurotransmission and rat hypothalamic corticotropin-releasing hormone secretion in vitro. Brain Research, 463, 2836.Google Scholar
Calogero, A. E., Bernardini, R., Margioris, A. N., et al (1989a) Effects of serotonergic agonists and antagonists on corticotropin-releasing hormone secretion by explanted rat hypothalami. Peptides, 10, 189200.Google Scholar
Calogero, A. E., Kamilaris, T. C., Gomez, M. T., et al (1989b) The muscarinic cholinergic agonist arecoline stimulates the rat hypothalamic–pituitary–adrenal axis through a centrally-mediated corticotropin-releasing hormone-dependent mechanism. Endocrinology, 125, 24452453.Google Scholar
Calogero, A. E., Bagdy, G., Szemeredi, K., et al (1990) Mechanisms of serotonin receptor agonist-induced activation of the hypothalamic–pituitary–adrenal axis in the rat. Endocrinology, 126, 18881894.Google Scholar
Cam, G. R., Bassett, J. R. & Cairncross, K. D. (1979) The action of nicotine on the pituitary–adrenal–cortical axis. Archives Internationales de Pharmacodynamic et de Thérapie, 237, 4966.Google Scholar
Canny, B. J., Funder, J. W. & Clarke, I. J. (1989) Glucocorticoids regulate ovine hypophysial portal levels of corticotropin-releasing factor and arginine vasopressin in a stress-specific manner. Endocrinology, 125, 25322539.Google Scholar
Canny, B. J., Clarke, I. J. & Funder, J. W. (1990) Adrenocorticotropin responses to endogenous and exogenous secretagogues in the sheep: specificity of glucocorticoid action. Neuroendocrinology, 51, 181189.CrossRefGoogle ScholarPubMed
Chappell, P. B., Smith, M. A., Kilts, C. D., et al (1986) Alterations in corticotropin-releasing factor-like immunoreactivity in discrete brain regions after acute and chronic stress. Journal of Neuroscience, 6, 29082914.CrossRefGoogle ScholarPubMed
Charlton, B. G., Leake, A., Wright, C., et al (1987) A combined study of Cortisol, ACTH and dexamethasone concentrations in major depression. British Journal of Psychiatry, 150, 791796.CrossRefGoogle ScholarPubMed
Childs, G. V. & Unabia, G. (1990) Rapid corticosterone inhibition of corticotropin-releasing hormone binding and adrenocorticotropin release by enriched populations of corticotropes: counteractions by arginine vasopressin and its second messengers. Endocrinology, 126, 19671975.Google Scholar
Chronwall, B. M., Dimaggio, D. A., Massari, V. J., et al (1985) The anatomy of neuropeptide-Y containing neurons in rat brain. Neuroscience, 15, 11591181.Google Scholar
Conte-Devolx, B., Rey, M., F., Boudouresque, et al (1983) Effect of 41-CRF antiserum on the secretion of ACTH, β-endorphin and alpha-MSH in the rat. Peptides, 4, 301304.Google Scholar
Cummings, S. & Seybold, V. (1988) Relationship of alpha-1- and alpha-2-adrenergic-binding sites to regions of the paraventricular nucleus of the hypothalamus containing corticotropin-releasing factor and vasopressin neurons. Neuroendocrinology, 47, 523532.Google Scholar
Defrance, R., Marey, C. & Kamoun, A. (1988) Antidepressant and anxiolytic activities of tianeptine. An overview of clinical trials. Clinical Neuropharmacology, 11, S74S82.Google Scholar
Delarue, C., Leboulenger, F. Morra, M., et al (1988a) Immunohistochemical and biochemical evidence for the presence of serotonin in amphibian adrenal chromaffin cells. Brain Research, 459, 1726.Google Scholar
Delarue, C., Lefebvre, H., Idres, S., et al (1988b) Serotonin stimulates corticosteroid secretion by frog adrenocortical tissue in vitro. Journal of Steroid Biochemistry, 29, 519525.CrossRefGoogle ScholarPubMed
Delbende, C., Jegou, S., Tranchand Bunel, D., et al (1989) Gamma-aminobutyric acid inhibits the release of alpha-melanocyte-stimulating hormone from rat hypothalamic slices. Brain Research, 497, 8693.Google Scholar
Delbende, C., Contesse, V., Mocaër, E., et al (1991) The novel antidepressant tianeptine reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. European Journal of Pharmacology, 202, 391396.Google Scholar
De Souza, E. B., Insel, T. R., Perrin, M. H., et al (1985) Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: an autoradiographic study. Journal of Neuroscience, 5, 31893203.CrossRefGoogle ScholarPubMed
De Souza, E. B. & Van Loon, G. R. (1986) Brain serotonin and catecholamine responses to repeated stress in rats. Brain Research, 367, 7786.Google Scholar
Dourish, C. T., Hutson, P. H. & Curzon, G. (1986) Putative anxiolytics 8-OH-DPAT, buspirone and TVXQ 7821 are agonists at 5-HT autoreceptors in the raphe nuclei. Trends in Pharmacological Sciences, 7, 212214.Google Scholar
Ehlers, C. L., Henriksen, S. J., Wang, M., et al (1983) Corticotropin-releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Research, 278, 332336.Google Scholar
Familari, M., Smith, A. I., Smith, R., et al (1989) Arginine vasopressin is a much more potent stimulus to ACTH release from ovine anterior pituitary cells than ovine corticotropin-releasing factor. Neuroendocrinology, 50, 152157.Google Scholar
Farese, R. V., Larson, R. E., Sabin, M. A., et al (1983) Effects of angiotensin II, K +, adrenocorticotropin, serotonin, adenosine 3', 5'-monophosphate, A23187 and EGTA on aldosterone synthesis and phospholipid metabolism in the rat adrenal zona glomerulosa. Endocrinology, 113, 13771386.Google Scholar
Fattacini, C. M., Bolamos-Jimenez, F., Gozlan, H., et al (1990) Tianeptine stimulates uptake of 5-hydroxytryptamine in vivo in the rat brain. Neuropharmacology, 29, 118.Google Scholar
Feldman, S., Melamed, E., Conforti, N., et al (1984) Effect of central serotonin depletion on adrenocortical responses to neural stimuli. Experimental Neurology, 85, 661666.Google Scholar
Feldman, S., Conforti, N. & Melamed, E. (1987) Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Research Bulletin, 18, 165168.Google Scholar
Fuller, R. W. & Snoddy, H. D. (1990) Serotonin receptor subtypes involved in the elevation of serum corticosterone concentration in rats by direct- and indirect-acting serotonin agonists. Neuroendocrinology, 52, 206211.CrossRefGoogle ScholarPubMed
Gibbs, D. M. & Vale, W. (1983) Effect of the serotonin reuptake inhibitor fluoxetine on corticotropin-releasing factor and vasopressin secretion into hypophysial portal blood. Brain Research, 280, 176179.Google Scholar
Giguere, V., Cote, J. & Labrie, F. (1981) Characteristics of the alpha-adrenergic stimulation of adrenocorticotropin secretion in rat anterior pituitary cells. Endocrinology, 109, 757762.Google Scholar
Giguere, V. & Labrie, F. (1982) Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture. Endocrinology, 111, 17521754.Google Scholar
Giguere, V. & Labrie, F. (1983) Additive effects of epinephrine and corticotropin-releasing factor CRF on adrenocorticotropin release in rat anterior pituitary cells. Biochemical and Biophysical Research Communications, 110, 456462.Google Scholar
Gillies, G. & Lowry, P. (1979) Corticotropin-releasing factor may be modulated by vasopressin. Nature, 278, 463464.Google Scholar
Gillies, G., Linton, E. A. & Lowry, P. J. (1982) Corticotropin-releasing activity of the new CRF is potentiated several times by vasopressin. Nature, 299, 355357.Google Scholar
Gold, P. W., Chrousos, G., Kellner, C., et al (1984) Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. American Journal of Psychiatry, 141, 619627.Google ScholarPubMed
Gold, P. W., & Chrousos, G. (1985) Clinical studies with corticotropin-releasing factor: implications for the diagnosis and pathophysiology of depression, Cushing's disease, and adrenal insufficiency. Psychoneuroendocrinology, 10, 401419.Google Scholar
Gold, P. W., Goodwin, F. K. & Chrousos, G. P. (1988) Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress. New England Journal of Medicine, 319, 413420.Google Scholar
Guillaume, V. (1989) La Méthode de Collection du Sang Porte Hypophysaire chez le Rat: Application a la Regulation d'ACTH. Thèse de Doctorat. Languedoc: Université des Sciences et Techniques du Languedoc.Google Scholar
Guillaume, V., Conte-Devolx, B., Szafarczyk, A., et al (1987) The corticotropin-releasing factor release in rat hypophysial portal blood is mediated by brain catecholamines. Neuroendocrinology, 46, 143146.Google Scholar
Guillaume, V., Grino, M., Conte-Devolx, B., et al (1989) Corticotropin releasing factor secretion increases in rat hypophysial portal blood during insulin-induced hypoglycemia. Neuroendocrinology, 49, 676679.Google Scholar
Guillemin, R. & Rosenberg, B. (1955) Humoral hypothalamic control of anterior pituitary: A study with combined tissue culture. Endocrinology, 57, 599607.Google Scholar
Haas, A. D. & George, S. R. (1987) Neuropeptide Y administration acutely increases corticotropin-releasing factor immunoreactivity: lack of effect in other rat brain regions. Life Sciences, 41, 27252731.Google Scholar
Haleem, D. J., Kennett, G. A., Whitton, P. S., et al (1989) 8-OH-DPAT increases corticosterone but not other 5-HT1A receptor-dependent responses more in females. European Journal of Pharmacology, 164, 435443.Google Scholar
Haning, R., Tait, S. A. S. & Tait, J. F. (1970) In vitro effects of ACTH, angiotensins, serotonin and potassium on steroid output and conversion of corticosterone to aldosterone by isolated adrenal cells. Endocrinology, 87, 11471167.Google ScholarPubMed
Harbuz, M. S. & Lightman, S. L. (1989a) Glucocorticoid inhibition of stress-induced changes in hypothalamic corticotropin-releasing factor messenger RNA and proenkephalin A messenger RNA. Neuropeptides, 14, 1721.Google Scholar
Harbuz, M. S. & Lightman, S. L. (1989b) Responses of hypothalamic and pituitary mRNA to physical and psychological stress in the rat. Journal of Endocrinology, 122, 705711.Google Scholar
Hauger, R. L., Millan, M. A., Lorang, M., et al (1988) Corticotropin-releasing factor receptors and pituitary adrenal responses during immobilization stress. Endocrinology, 123, 396405.CrossRefGoogle ScholarPubMed
Hedge, G. A. & De Wied, D. (1971) Corticotropin and vasopressin secretion after hypothalamic implantation of atropine. Endocrinology, 88, 12571259.Google Scholar
Heisler, S., Reisine, T. D., Hoock, V. Y. H., et al (1982) Somatostatin inhibits multi-receptor stimulation of cyclic AMP formation and corticotropin secretion in mouse pituitary tumor cells. Proceedings of the National Academy of Sciences of the USA, 79, 65026506.Google Scholar
Hillhouse, E. W. & Milton, N. G. N. (1989a) Effect of acetylcholine and 5-hydroxytryptamine on the secretion of corticotropin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. Journal of Endocrinology, 122, 713718.Google Scholar
Hillhouse, E. W. & Milton, N. G. N. (1989b) Effect of noradrenaline and gamma-aminobutyric acid on the secretion of corticotropin-releasing factor-41 and arginine vasopressin from the rat hypothalamus in vitro. Journal of Endocrinology, 122, 719723.Google Scholar
Holmes, M. C., Di Renzo, G., Beckford, U., et al (1982) Role of serotonin in control of secretion of corticotropin-releasing factor. Journal of Endocrinology, 93, 151160.Google Scholar
Holsboer, F., Gerken, A., Stalla, G. K., et al (1987) Blunted aldosterone and ACTH release after human CRH administration in depressed patients. American Journal of Psychiatry, 144, 229231.Google Scholar
Holzwarth, M. A., Sawetawan, C. & Brownfield, M. S. (1984) Serotonin immunoreactivity in the adrenal medulla: distribution and response to pharmacological manipulation. Brain Research Bulletin, 13, 299308.Google Scholar
Holzwarth, M. A. & Brownfield, M. S. (1985) Serotonin coexists with epinephrine in rat adrenal medulla. Neuroendocrinology, 41, 230236.Google Scholar
Hynes, R. C. & Murad, F. (1975) Adrenocorticotropic hormone; adrenocortical steroids and their synthesis analogs; inhibitors of adrenocortical steroid biosynthesis. In The Pharmacological Basis of Therapeutics (eds Gilman, A. G., Goodman, L. S. & Gilman, A.). New York: Macmillan Press.Google Scholar
Idres, S., Delarue, C., Lefebvre, H., et al (1989) Mechanism of action of serotonin on frog adrenal cortex. Journal of Steroid Biochemistry, 34, 547550.Google Scholar
Inoue, T., Inui, A., Okita, M., et al (1989) Effect of neuropeptide Y on the hypothalamo–pituitary–adrenal axis in the dog. Life Sciences, 44, 10431051.Google Scholar
Ixart, G., Cryssogelou, H., Szafarczyk, A., et al (1983) Acute and delayed effects of picrotoxin on the adrenocorticotropic system of rats. Neuroscience Letters, 43, 235240.Google Scholar
Joanny, P., Steinberg, J., Zamora, A. J., et al (1989) Corticotropin-releasing factor release from in vitro superfused and incubated rat hypothalamus. Effect of potassium, norepinephrine, and dopamine. Peptides, 10, 903911.Google Scholar
Keller-Wood, M. & Dallman, M. F. (1984) Corticosteroid inhibition of ACTH secretion. Endocrine Reviews, 5, 124.Google Scholar
Kerkerian, L., Guy, J., Lefebvre, G., et al (1985) Effects of neuropeptide Y (NPY) on the release of anterior pituitary hormones in the rat. Peptides, 6, 12011204.Google Scholar
Koenig, J. I., Gudelsky, G. A. & Meltzer, H. Y. (1987) Stimulation of corticosterone and β-endorphin secretion in the rat by selective 5-HT receptor subtype activation. European Journal of Pharmacology, 137, 18.Google Scholar
Koenig, J. I., Meltzer, H. Y. & Gudelsky, G. A. (1988) 5-Hydroxytryptamine 1A receptor-mediated effects of buspirone, gepirone and ipsapirone. Pharmacology, Biochemistry and Behavior, 29, 711715.Google Scholar
Koob, G. F. & Thatcher-Britton, K. (1985) Stimulant and anxiogenic effects of corticotropin-releasing factor. In Endocoids (eds Lal, H., LaBella, F. & Lane, J.). Alan R. Liss.Google Scholar
Korte, S. M., Van Duin, S., Bouws, G. A. H., et al (1991) Involvement of hypothalamic serotonin in activation of the sympathoadrenomedullary system and hypothalamo-pituitary-adrenocortical axis in male Wistar rats. European Journal of Pharmacology, 197, 225228.Google Scholar
Lefebvre, H., Contesse, V., Delarue, C., et al (1992) Serotonin-induced stimulation of Cortisol secretion from human adrenocortical tissue is mediated through activation of a 5-HT4 receptor subtype. Neuroscience, (in press).Google Scholar
Leger, L., Charnay, Y., Danger, J. M., et al (1987) Mapping of neuropeptide Y-like immunoreactivity in the feline hypothalamus and hypophysis. Journal of Comparative Neurology, 255, 283292.Google Scholar
Leibowitz, S. F., Diaz, S. & Tempel, D. (1989) Norepinephrine in the paraventricular nucleus stimulates corticosterone release. Brain Research, 496, 219227.Google Scholar
Levine, A. S., Rogers, B., Kneip, J., et al (1983) Effects of centrally administered corticotropin-releasing factor (CRF) on multiple feeding paradigms. Life Sciences, 22, 337339.Google Scholar
Lightman, S. L. & Young, W. S. III. (1987) Vasopressin, oxytocin, dynorphin, enkephalin and corticotropin-releasing factor mRNA stimulation in the rat. Journal of Physiology, 394, 2339.Google Scholar
Lightman, S. L. & Young, W. S. III. (1989) Influence of steroids on the hypothalamic corticotropin-releasing factor and pre-proenkephalin mRNA responses to stress. Proceedings of the National Academy of Sciences of the USA, 86, 43064310.Google Scholar
Lim, A. T., Khalid, A. K., Clements, J., et al (1982) Glucocorticoid and mineralocorticoid effects on adrenocorticotropin and β-endorphin in the adrenalectomized rat. Journal of Clinical Investigation, 69, 11911198.Google Scholar
Liposits, Zs., Phelix, C. & Paull, W. K. (1986a) Adrenergic innervation of corticotropin-releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry, 84, 201205.Google Scholar
Liposits, Zs., Sherman, D., Phelix, C., et al (1986b) A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens: tyrosine hydroxylase immunoreactive innervation of corticotropin-releasing factor synthesizing neurons in the paraventricular nucleus of the rat. Histochemistry, 85, 95106.CrossRefGoogle ScholarPubMed
Liposits, Zs., Phelix, C. & Paull, W. K. (1987a) Synaptic interaction of serotonergic axons and corticotropin-releasing factor (CRF) synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A light and electron microscopic immunocytochemical study. Histochemistry, 86, 541549.Google Scholar
Liposits, Zs., Uht, R. M., Harrison, R. W., et al (1987b) Ultrastructural localization of glucocorticoid receptor (GR) in hypothalamic paraventricular neurons synthesizing corticotropin-releasing factor (CRF). Histochemistry, 87, 407412.Google Scholar
Liposits, Zs., Sievers, L. & Paull, W. K. (1988) Neuropeptide-Y and ACTH-immunoreactive innervation of corticotropin-releasing factor (CRF)-synthesizing neurons in the hypothalamus of the rat. An immunocytochemical analysis at the light and electron microscopic levels. Histochemistry, 88, 227234.Google Scholar
Liposits, Zs. & Paull, W. K. (1989) Association of dopaminergic fibers with corticotropin-releasing hormone (CRH)-synthesizing neurons in the paraventricular nucleus of the rat hypothalamus. Histochemistry, 93, 119127.Google Scholar
Lôo, H. & Deniker, P. (1988) Position of tianeptine among antidepressive chemotherapies. Clinical Neuropharmacology, 11 (suppl. 2), S97–S102.Google Scholar
Lôo, H., Malka, R., Defrance, R., et al (1988) Tianeptine and amitriptyline: Controlled double-blind trial in depressed alcoholic patients. Neuropsychobiology, 19, 7985.Google Scholar
Lorens, S. A. & Van de Kar, L. D. (1987) Differential effects of serotonin (5-HT1A and 5-HT2) agonists and antagonists on renin and corticosterone secretion. Neuroendocrinology, 45, 305310.Google Scholar
McElroy, J. F., Miller, J. M. & Meyer, J. S. (1984) Fenfluramine, p-chloroamphetamine and p-fluoroamphetamine stimulation of pituitary–adrenocortical activity in rat: evidence for differences in site and mechanism of action. Journal of Pharmacology and Experimental Therapeutics, 228, 593599.Google Scholar
Maccari, S., Le Moal, M., Angelucci, L., et al (1990) Influence of 6-OHDA lesion of central noradrenergic systems on corticosteroid receptors and neuroendocrine responses to stress. Brain Research, 533, 6065.Google Scholar
Makara, G. B. & Stark, E. (1974) Effect of gamma-aminobutyric acid (GABA) and GABA antagonist drugs on ACTH release. Neuroendocrinology, 16, 178190.Google Scholar
Makara, G. B. & Stark, E., Kaurteszi, M., et al (1981) Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of the rat. American Journal of Physiology, 240, E441E446.Google Scholar
Matheson, G. K. (1980) Effects of gamma-aminobutyric acid agonists and antagonists on ACTH release. Brain Research Bulletin, 5, 447452.Google Scholar
Matsuoka, H., Ishu, M., Goto, A., et al (1985) Role of serotonin type 2 receptors in regulation of aldosterone production. American Journal of Physiology, 249, E234E238.Google Scholar
Matta, S. G., Singh, J. & Sharp, B. M. (1990) Catecholamines mediate nicotine-induced adrenocorticotropin secretion via α-adrenergic receptors. Endocrinology, 127, 16461655.Google Scholar
Mendelson, S. D. & McEwen, B. S. (1991) Autoradiographic analyses of the effects of restraint-induced stress on 5-HT1A, 5-HT1C and 5-HT2 receptors in the dorsal hippocampus of male and female rats. Neuroendocrinology, 54, 454461.Google Scholar
Mennini, T., Mocaër, E. & Garattini, S. (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedeberg's Archives of Pharmacology, 336, 478482.Google Scholar
Merchanthaler, I., Vigh, S., Petrusz, P., et al (1982) Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. American Journal of Anatomy, 165, 385396.Google Scholar
Mezey, E., Reisine, T. D., Palkovits, M., et al (1983) Direct stimulation of β2-adrenergic receptors in rat anterior pituitary induces the release of adrenocorticotropin in vivo. Proceedings of the National Academy of Sciences of the USA, 80, 67286731.Google Scholar
Mezey, E., Kiss, J. Z., Skirboll, L. R., et al (1984) Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurons by depletion of hypothalamic adrenaline. Nature, 310, 140141.Google Scholar
Mocaër, E., Rettori, M. C. & Kamoun, A. (1988) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clinical Neuropharmacology, 11, S32S42.Google Scholar
Mugnaini, E. & Oertel, W. (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In Handbook of Chemical Neuroanatomy, Vol. 4 (eds Björklund, A. & Hökfelt, T.), pp. 436608. Amsterdam: Elsevier.Google Scholar
Nakagami, Y., Suda, T., Yajima, F., et al (1986) Effects of serotonin, cyproheptadine and reserpine on corticotropin-releasing factor release from the rat hypothalamus in vitro. Brain Research, 386, 232236.Google Scholar
Nakanishi, S., Inoue, A., Kita, T., et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin–beta–lipoprotin precursor. Nature, 278, 423427.Google Scholar
Negro-Vilar, A., Johnston, C., Spinedi, E., et al (1987) Physiological role of peptides and amines on the regulation of ACTH secretion. Annals of the New York Academy of Sciences, 512, 218236.Google Scholar
Nemeroff, C. B. (1988) The role of corticotropin-releasing factor in the pathogenesis of major depression. Pharmacopsychiatry, 21, 7682.Google Scholar
Nemeroff, C. B., Widerlov, E., Bissette, G., et al (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science, 226, 13421344.Google Scholar
Olié, J. P., Guelfi, J. D., Malka, R., et al (1988) Traitements de longue durée par les antidépresseurs. La tianeptine: méthodologie d'une étude au long cours et résultats préliminaires. L'Encéphale, 14, 379384.Google Scholar
Oliver, C., Mical, R. S. & Porter, J. C. (1977) Hypothalamic–pituitary vasculature: evidence for retrograde blood flow in the pituitary stalk. Endocrinology, 101, 598604.Google Scholar
Olschowka, J. A., O'Donohue, T. L., Mueller, G. P., et al (1982) Hypothalamic and extrahypothalamic distribution of CRF-like immunoreactive neurons in the rat brain. Neuroendocrinology, 35, 305308.Google Scholar
Ostaptzeff, G. (1981) Etude contrôlée à double insu versus imipramine de l'efficacité de la tianeptine dans des états dépressifs non psychotiques. In Biological Psychiatry in Biological Psychiatry. Proceedings of the IIIrd World Congress of Biological Psychiatry June 28–July 3, Stockholm, Sweden. Amsterdam: Elsevier.Google Scholar
Owens, M. J., Edwards, E. & Nemeroff, C. B. (1990) Effects of 5-HT1A receptor agonists on hypothalamo-pituitary-adrenal axis activity and corticotropin-releasing factor containing neurons in the rat brain. European Journal of Pharmacology, 190, 113122.Google Scholar
Owens, M. J., Knight, D. L., Ritchie, J. C., et al (1991) The 5-hydroxytryptamine2 agonist, ($pM)-1-(2,5-dimethoxy-4-bromo-phenyl)-2-aminopropane stimulates the hypothalamic pituitary-adrenal (HPA) axis. I. Acute effects on HPA axis activity and corticotropin-releasing factor-containing neurons in the rat brain. Journal of Pharmacology and Experimental Therapeutics, 256, 787794.Google Scholar
Palkovits, M., Saavedra, J. M., Jacobowitz, D. M., et al (1977) Serotonergic innervation of the forebrain: effect of lesions on serotonin and tryptophan hydroxylase levels. Brain Research, 130, 121134.Google Scholar
Piekut, D. T. (1987) Interactions of immunostained ACTH 1–39 fibers and CRF neurons in the paraventricular nucleus of rat hypothalamus: Application of avidin-glucose oxidase to dual immunostaining procedures. Journal of Histochemistry and Cytochemistry, 35, 261265.Google Scholar
Plotsky, P. (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology, 121, 924930.Google Scholar
Plotsky, P. & Vale, W. (1984) Hemorrhage-induced secretion of corticotropin-releasing factor-like immunoreactivity into the rat hypophysial portal circulation and its inhibition by glucocorticoids. Endocrinology, 114, 164169.CrossRefGoogle ScholarPubMed
Plotsky, P., Cunningham, E. T. & Widmaier, E. P. (1989) Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocrine Reviews, 10, 437458.Google Scholar
Poignant, J. C. (1981) Etude pharmacologique d'un nouvel antidépresseur: la tianeptine. In Biological Psychiatry. Proceedings of the IIIrd World Congress of Biological Psychiatry June 28–June 3, Stockholm, Sweden. Amsterdam: Elsevier.Google Scholar
Reisine, T., Heisler, S., Hook, V. Y. H., et al (1982) Multireceptor-induced release of adrenocorticotropin from anterior pituitary tumour cells. Biochemical and Biophysical Research Communications, 108, 12511257.Google Scholar
Rey, M., Guillaume, V., Conte-Devolx, B., et al (1984) Effets de la médullosurrénalectomie et de l'immunisation passive par un sérum anti-CRF sur la sécrétion corticotrope en réponse au stress chez le rat Long-Evans. Comptes Rendus des séances de I'Académie des Sciences de Paris, 299, 515520.Google Scholar
Richardson Morton, K. D., Van de Kar, L. D., Brownfield, M. S., et al (1990) Stress induced renin and corticosterone secretion is mediated by catecholaminergic nerve terminals in the hypothalamic paraventricular nucleus. Neuroendocrinology, 51, 320327.Google Scholar
Rivier, C., Rivier, J. & Vale, W. (1982) Inhibition of adrenocorticotropic hormone secretion in the rat by immunoneutralization of corticotropin-releasing factor. Science, 218, 377379.Google Scholar
Rivier, C. & Vale, W. (1983) Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 305, 325327.Google Scholar
Rivier, C., Rivier, J., Mormende, P., et al (1984) Studies of the nature of the interaction between vasopressin and corticotropin-releasing factor on adrenocorticotropin (ACTH) release in the rat. Endocrinology, 115, 882886.Google Scholar
Roberts, J. L. & Herbert, E. (1977) Characterization of a common precursor to corticotropin and β-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proceedings of the National Academy of Sciences of the USA, 74, 48264830.Google Scholar
Rupprecht, R., Lesch, K. P., Muller, U., et al (1989) Blunted adrenocorticotropin but normal β-endorphin release after human corticotropin-releasing hormone administration in depression. Journal of Clinical Endocrinology and Metabolism, 69, 600603.Google Scholar
Saffran, M. & Schally, A. V. (1955) The release of corticotropin by anterior pituitary tissue in vitro. Canadian Journal of Biochemistry & Physiology, 33, 408415.Google Scholar
Sapolsky, R. M., Armanini, M. P., Packan, D. R., et al (1990) Glucocorticoid feedback inhibition of adrenocorticotropic hormone secretagogue release. Relationship to corticosteroid receptor occupancy in various limbic sites. Neuroendocrinology, 51, 328336.Google Scholar
Scaccianoce, S., Muscolo, L. A. A., Cigliana, G., et al (1991) Evidence for a specific role of vasopressin in sustaining pituitary-adrenocortical stress response in the rat. Endocrinology, 128, 31383143.Google Scholar
Sharkey, J., Appel, N. M. & De Souza, E. B. (1989) Alterations in local cerebral glucose utilization following central administration of corticotropin-releasing factor in rats. Synapse, 4, 8087.Google Scholar
Sharp, B. M., Nicol, S., Cummings, S., et al (1987) Distribution of nicotinic binding sites with respect to CRF and neurophysin immunoreactive perikarya within the rat hypothalamus. Brain Research, 422, 361366.Google Scholar
Shen, P. J., Clarke, I. J., Canny, B. J., et al (1990) Arginine vasopressin and corticotropin releasing factor: binding to ovine anterior pituitary membranes. Endocrinology, 127, 20852089.Google Scholar
Sinton, C. M. & Fallon, S. L. (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. European Journal of Pharmacology, 157, 173181.Google Scholar
Sirinathsinghji, D. J. S., Rees, L. H., Rivier, J., et al (1983) Corticotropin-releasing factor is a potent inhibitor of sexual receptivity in the female rat. Nature, 305, 232235.Google Scholar
Sithichoke, N., Malasanos, L. J. & Marotta, S. F. (1978) Cholinergic influences on hypothalamic pituitary–adrenocortical activity of stressed rats: an approach utilizing choline deficient diets. Acta Endocrinologica, 89, 737743.Google Scholar
Spiess, J., Rivier, J., Rivier, C., et al (1981) Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proceedings of the National Academy of Sciences of the USA, 78, 65176521.Google Scholar
Spinedi, E. & Negro-Vilar, A. (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double-labelling methods. Journal of Comparative Neurology, 194, 555570.Google Scholar
Spinedi, E. & Gaillard, R. C. (1991) Stimulation of the hypothalamo-pituitary-adrenocortical axis by the central serotonergic pathway – involvement of endogenous corticotropin releasing hormone but not vasopressin. Journal of Endocrinological Investigation, 14, 551558.Google Scholar
Suda, T., Tozawa, F., Mouri, T., et al (1983) Effects of cyproheptadine, reserpine and synthetic corticotropin-releasing factor on pituitary glands from patients with Cushing's disease. Journal of Clinical Endocrinology and Metabolism, 56, 10941099.Google Scholar
Suda, T., Yajima, F., Tomori, N., et al (1985) In vitro study of immunoreactive corticotropin-releasing factor release from rat hypothalamus. Life Sciences, 37, 14991505.Google Scholar
Suda, T., Yajima, F., Tomori, N., et al (1986) Inhibitory effect of adrenocorticotropin on corticotropin-releasing factor release from rat hypothalamus in vitro. Endocrinology, 118, 459461.Google Scholar
Suemaru, S., Dallman, M. F., Darlington, D. N., et al (1989) Role of alpha-adrenergic mechanism in effects of morphine on the hypothalamo–pituitary–adrenocortical and cardiovascular systems in the rat. Neuroendocrinology, 49, 181190.Google Scholar
Sutton, R. E., Koob, G. G., Lemoal, M., et al (1982) Corticotropin-releasing factor produces behavioural activation in rats. Nature, 297, 331333.Google Scholar
Swanson, L. W. & Sawchenko, P. E. (1983) Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annual Review of Neuroscience, 6, 269324.CrossRefGoogle ScholarPubMed
Swanson, L. W., Sawchenko, P. E., Rivier, J., et al (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology, 36, 165186.Google Scholar
Swanson, L. W. & Simmons, D. M. (1989) Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. Journal of Comparative Neurology, 285, 413436.Google Scholar
Szafarczyk, A., Alonso, G., Ixart, G., et al (1985) Diurnal-stimulated and stress-induced ACTH release in rats is mediated by ventral noradrenergic bundle. American Journal of Physiology, 249, E219E226.Google Scholar
Szafarczyk, A., Malaval, F., Laurent, A., et al (1987) Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology, 121, 883892.Google Scholar
Tago, H., McGeer, P. L., Bruce, G., et al (1987) Distribution of choline acetyltransferase-containing neurons of the hypothalamus. Brain Research, 415, 4962.Google Scholar
Tilders, F. J. H., Berkenbosch, F., Vermes, I., et al (1985) Role of epinephrine and vasopressin in the control of the pituitary adrenal response to stress. Federation Proceedings, 44, 155160.Google Scholar
Traber, J. & Glaser, T. (1987) 5-HT1A receptor-related anxiolytics. Trends in Pharmacological Sciences, 8, 432437.CrossRefGoogle Scholar
Tranchand Bunel, D., Jegou, S., Delbende, C., et al (1987) La pro-opiomélanocortine et ses dérivés dans le système nerveux central. Medicine Sciences, 3, 128137.Google Scholar
Tsagarakis, S., Holly, J. M. P., Rees, L. H., et al (1988) Acetylcholine and norepinephrine stimulate the release of corticotropin-releasing factor-41 from the rat hypothalamus in vitro. Endocrinology, 123, 19621969.Google Scholar
Tsagarakis, S., Navara, P., Rees, L. H., et al (1989) Morphine directly modulates the release of stimulated corticotropin-releasing factor-41 from rat hypothalamus in vitro. Endocrinology, 124, 23302335.Google Scholar
Tsagarakis, S., Rees, L. H., Besser, M., et al (1990) Opiate receptor subtype regulation of CRF-41 release from rat hypothalamus in vitro. Neuroendocrinology, 51, 599605.Google Scholar
Urban, J. H., Van de Kar, L. D., Lorens, S. A., et al (1986) Effect of the anxiolytic drug buspirone on prolactin and corticosterone secretion in stressed and unstressed rats. Pharmacology, Biochemistry and Behavior, 25, 457462.Google Scholar
Vale, W., Spiess, J., Rivier, C., et al (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphine. Science, 213, 13941397.Google Scholar
Vale, W., Vaughan, J., Smith, M., et al (1983) Effects of synthetic ovine CRF, glucocorticoids, catecholamines, neurohypophysial peptides and other substances on cultured corticotropic cells. Endocrinology, 113, 11211131.Google Scholar
Van de Kar, L. D., Urban, J. H., Richardson, K. D., et al (1985) Pharmacological studies on the serotoninergic- and non serotoninergic-mediated stimulation of prolactin and corticosterone secretion by fenfluramine. Neuroendocrinology, 41, 183188.Google Scholar
Vandermaelen, C. P., Matheson, G. K., Wilderman, R. C., et al (1986) Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. European Journal of Pharmacology, 129, 123130.Google Scholar
Verhofstad, A. A. J. & Jonsson, G. (1983) Immunohistochemical and neurochemical evidence for the presence of serotonin in the adrenal medulla of the rat. Neuroscience, 10, 14431453.Google Scholar
Wahlestedt, C., Skagerberg, G., Ekman, R., et al (1987) Neuropeptide Y (NPY) in the area of the hypothalamic paraventricular nucleus activates the pituitary–adrenocortical axis in the rat. Brain Research, 417, 3338.Google Scholar
Weidenfeld, J., Brenner, T., Conforti, N., et al (1988) Differential adrenocortical responses to neural stimuli following intracerebroventricular injection of nicotinic acetylcholine receptor antibodies in rats. Experimental Neurology, 100, 578582.Google Scholar
Weidenfeld, J., Bodoff, M., Saphier, D., et al (1989) Further studies on the stimulatory action of nicotine on adrenocortical function in the rat. Neuroendocrinology, 50, 132138.Google Scholar
Weiss, C., Gorceix, A., Kindynis, S., et al (1981) Etude contrôlée à double insu versus nomifensine de l'acuvité et du délai d'action d'un nouvel antidépresseur la tianeptine. In Biological Psychiatry in Biological Psychiatry. Proceedings of the IIIrd World Congress of Biological Psychiatry June 28–July 3, Stockholm, Sweden. Amsterdam: Elsevier.Google Scholar
Whitley, G. St. J., Bell, J. B. G., Chu, F. W., et al (1984) The effects of ACTH, serotonin, K + and angiotensin analogues on 32P incorporation into phospholipids of the rat adrenal cortex: basis for an assay method using zone glomerulosa cells. Proceedings of the Royal Society of London, 222, 273294.Google Scholar
Williams, J. H., Miall-Allen, V. M., Klinowski, M., et al (1983) Effects of microinjections of 5,7-dihydroxytryptamine in the suprachiasmatic nuclei of the rat on serotonin reuptake and the circadian variation of corticosterone levels. Neuroendocrinology, 36, 431435.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.