Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T09:07:17.410Z Has data issue: false hasContentIssue false

The Effect of Lithium on Cation Transport Measured in vivo in Patients Suffering from Bipolar Affective Illness

Published online by Cambridge University Press:  02 January 2018

A. J. Wood*
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Rd, Oxford OX2 6HE
M. Elphick
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Rd, Oxford OX2 6HE
J. K. Aronson
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Rd, Oxford OX2 6HE
D. G. Grahame-Smith
Affiliation:
MRC Unit and University Department of Clinical Pharmacology, Radcliffe Infirmary, Woodstock Rd, Oxford OX2 6HE
*
Warneford Hospital, Oxford

Abstract

We have investigated cation transport in vivo in patients being treated with lithium for bipolar affective illness by studying the disposition of rubidium after an oral load of rubidium chloride. The rate of erythrocyte cation transport was increased in the patients when compared with matched healthy volunteers. However, the rate of in-vivo erythrocyte rubidium accumulation in the euthymic treated patients was significantly lower than in a matched group of unmedicated manic patients. The regulation of specific pathways for cation transport may be altered in individuals predisposed to affective illness.

Type
Papers
Copyright
Copyright © Royal College of Psychiatrists 1989 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagawa, K., Watanabe, M. & Tsukade, Y. (1980) Activity of Na+,K+-ATPase in manic patients. Journal of Neurochemistry, 35, 258260.Google Scholar
American Psychiatric Association (1980) Diagnostic and Statistical Manual of Mental Disorders (3rd edn) (DSM–III). Washington, DC: APA.Google Scholar
Aronson, J. K. (1989) Methods for expressing the activity of transmembrane ion transport systems. Clinical Science (in press).Google Scholar
Baron, D. N., Green, R. J. & Khan, F. A. (1985) Adrenaline and ion flux in human leucocytes. Clinical Science, 68, 517521.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C. H., Mendelson, M., et al (1961) An inventory for measuring depression. Archives of General Psychiatry, 4, 561571.Google Scholar
Bodemann, H. H., Irmer, M. & Schluter, K. (1982) Catecholamines stimulate the NA,K-pump of human erythrocytes in vivo. European Journal of Clinical Investigation, 12, 4.Google Scholar
Bodemann, H. H., Irmer, M., Schluter, K. et al (1985) Increased Na+ transport in human red blood cells by beta adrenoceptor stimulation in vivo. In The Sodium Pump (eds Glynn, I. & Ellory, J. C.), pp. 721722. London: Company of Biologists.Google Scholar
Boon, N. A., Aronson, J. K., Hallis, K. F., et al (1984) A method for the study of cation transport in vivo: effects of digoxin administration and of chronic renal failure on the disposition of an oral load of rubidium chloride. Clinical Science, 66, 569574.Google Scholar
Boon, N. A., Aronson, J. K., Hallis, K. F., et al (1986) Cation transport abnormalities in vivo in untreated essential hypertension. Clinical Science, 70, 611616.CrossRefGoogle ScholarPubMed
Brown, M. J., Brown, D. C. & Murphy, M. B. (1983) Beta2-receptor stimulation by circulating epinephrine causes prolonged hypokalemia. New England Journal of Medicine, 309, 14141419.Google Scholar
Cade, J. F. (1949) Lithium salts in the treatment of psychotic excitement. Medical Journal of Australia, 36, 349352.Google Scholar
Clausen, T. & Flatman, J. A. (1980) B2-adrenoceptors mediate the stimulating effect of adrenaline on active electrogenic Na–K transport in rat soleus muscle. British Journal of Pharmacology, 68, 749755.CrossRefGoogle Scholar
Dagher, G., Gay, C., Brossard, M., et al (1984) Lithium, sodium and potassium transport in erythrocyte of manic depressive patients. Acta Psychiatrica Scandinavica, 69, 2436.Google Scholar
deWardener, H. E. & Clarkson, E. M. (1985) Concept of the natriuretic hormone. Physiological Reviews, 65, 658758.Google Scholar
Dick, D. A. T., Naylor, G. J. & Dick, E. G. (1982) Plasma vanadium concentration in manic and depressive illness. Psychological Medicine, 12, 533537.Google Scholar
Ebstein, R. P., Belmaker, R. H., Grunhaus, L., et al (1976) Lithium inhibition of adrenaline stimulated adenylate cyclase in humans. Nature, 259, 411413.Google Scholar
Hamilton, M. (1960) A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 5662.Google Scholar
Hesketh, J. E., Glen, A. I. M. & Reading, H. W. (1977) Membrane ATPase activity in depressive illness. Journal of Neurochemistry, 28, 14011402.Google Scholar
Hesketh, J. E., Loudon, J. B., Reading, H. W., et al (1978) The effect of lithium treatment on erythrocyte membrane ATPase activities and erythrocyte ion content. British Journal of Clinical Pharmacology, 5, 323329.CrossRefGoogle Scholar
Hokin-Neaverson, M., Spiegel, D. A. & Lewis, W. C. (1974) Deficiency of erythrocyte sodium pump activity in bipolar manic depressive psychosis. Life Sciences, 15, 17391748.Google Scholar
Hokin-Neaverson, M., Burckhardt, W. & Jefferson, J. W. (1976) Increased erythrocyte Na+ pump and Na-K ATPase activity during lithium therapy. Research Communications in Pathology and Pharmacology, 14, 117126.Google Scholar
Johnston, B. B., Naylor, G. J., Dick, E. G., et al (1980) Prediction of the course of bipolar manic depressive illness treated with lithium. Psychological Medicine, 10, 329334.CrossRefGoogle ScholarPubMed
Naylor, G. J. (1985) Reversal of vanadate-induced inhibition of Na+,K+-ATPase. A possible explanation of the therapeutic effect of carbamazepine in affective illness. Journal of Affective Illness, 8, 329334.Google Scholar
Naylor, G. J., Dick, D. A. T., Dick, E. G., et al (1973) Erythrocyte membrane cation carrier in depressive illness. Psychological Medicine, 3, 502508.Google Scholar
Naylor, G. J., Dick, D. A. T., Dick, E. G., et al (1974) Lithium therapy and erythrocyte membrane cation carrier. Psychopharmacology, 37, 8186.Google Scholar
Naylor, G. J., Dick, D. A. T., Dick, E. G., et al (1976) Erythrocyte membrane cation carrier in mania. Psychological Medicine, 6, 659663.Google Scholar
Naylor, G. J., Dick, D. A. T., Johnston, B. B., et al (1981) A possible explanation for the therapeutic action of lithium and a possible substitute (methylene blue). Lancet, ii, 11751176.Google Scholar
Naylor, G. J., Smith, A. H. W., Boardman, L. J., et al (1977) Lithium and erythrocyte membrane cation carrier studies in normal and manic depressive subjects. Pyschological Medicine, 7, 229233.CrossRefGoogle ScholarPubMed
Naylor, G. J., Smith, A. H. W., Dick, E. G., et al (1980) Erythrocyte membrane cation carrier in manic depressive psychosis. Psychological Medicine, 10, 521525.Google Scholar
Naylor, G. J. & Smith, A. H. W. (1981) Vanadium; a possible aetiological factor in manic depressive illness. Psychological Medicine, 11, 249256.Google Scholar
Naylor, G. J., Smith, A. H. W., Bryce-Smith, D., et al (1984) Tissue vanadium levels in manic depressive psychosis. Psychological Medicine, 14, 767772.Google Scholar
Naylor, G. J., Corrigan, F. M., Smith, A. H. W., et al (1987a) Further studies of vanadium in depressive psychosis. British Journal of Psychiatry, 150, 656661.Google Scholar
Naylor, G. J., Smith, A. H. W. & Connelly, P. (1987b) A controlled trial of methylene blue in severe depressive illness. Biological Psychiatry, 22, 657659.CrossRefGoogle ScholarPubMed
Nurnburger, J., Jimerson, D. C., Allen, J. R., et al (1982) Red cell ouabain-sensitive Na+-K+ adenosine triphosphatase: a state marker in affective illness inversely related to plasma Cortisol. Biological Psychiatry, 17, 981991.Google Scholar
Pettegrew, J. W., Nichols, J. S., Minshew, N. J., et al (1982) Membrane biophysical studies of lymphocytes and erythrocytes in manic-depressive illness. Journal of Affective Disorders, 4, 237247.Google Scholar
Phillis, J. W. & Wu, P. H. (1981) Catecholamines and the sodium pump in excitable cells. Progress in Neurobiology, 17, 141184.Google Scholar
Sengupta, N., Datta, S. C., Sengupta, D., et al (1980) Platelet and erythrocyte membrane ATPase activity in depression and mania. Psychiatry Research, 3, 337344.Google Scholar
Thakar, J. H., Lapierre, Y. D. & Waters, B. G. (1985) Erythrocyte membrane sodium-potassium and magnesium ATPase affective disorder. Biological Psychiatry, 20, 734740.Google Scholar
Wood, A. J. (1987) Changes in cation transport during affective illness: do they have therapeutic implications? Human Psychopharmacology, 2, 197210.Google Scholar
Wood, A. J. & Goodwin, G. M. (1987) A review of the biochemical and neuropharmacological actions of lithium. Psychological Medicine, 17, 579600.Google Scholar
Wood, A. J., Viswalingam, A., Aronson, J. K., et al (1986) The effect of lithium on cation transport in vivo and in vitro in healthy volunteers. British Journal of Clinical Pharmacology, 21, 609610 P.Google Scholar
Wood, A. J., Aronson, J. K., Cowen, P. J., et al (1987) In vivo measurement of cation transport in patients suffering from acute manic illness. New Directions in Affective Illness, p. 58. Proceedings of the International Conference, Jerusalem.Google Scholar
Wood, A. J., Brearley, C. J., Aronson, J. K., et al (1988a) The effect of salbutamol on in vivo cation transport. British Journal of Clinical Pharmacology, 25, 624625.Google Scholar
Wood, A. J., Viswalingam, A., Glue, P., et al (1988b) Measurement of cation transport in vivo and in vitro in healthy volunteers after the oral administration of lithium carbonate. Clinical Science, (in press).Google Scholar
Young, R. C., Biggs, J. T., Ziegler, V., et al (1978) A rating scale for mania: reliability, validity and sensitivity. British Journal of Psychiatry, 153, 429435.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.