Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T16:11:57.210Z Has data issue: false hasContentIssue false

Cerebral Blood Flow in Chronic Cocaine Users: A Study with Positron Emission Tomography

Published online by Cambridge University Press:  02 January 2018

Nora D. Volkow*
Affiliation:
University of Texas Health Science Center at Houston
Nizar Mullani
Affiliation:
University of Texas Health Science Center at Houston
K. Lance Gould
Affiliation:
University of Texas Health Science Center at Houston
Stephen Adler
Affiliation:
University of Texas Health Science Center at Houston
Kenneth Krajewski
Affiliation:
University of Texas Health Science Center at Houston
*
Medical Department, Brookhaven National Laboratory, Associated Universities Inc., Upton, Long Island, New York 11973, USA

Abstract

Occurrence of cerebrovascular accidents has been associated with cocaine abuse. We investigated the relative distribution of cerebral blood flow (CBF) in groups of chronic cocaine users, and of normal controls. Relative CBF was measured using positron emission tomography and 15oxygen-labelled water. The cocaine users showed areas of deranged CBF as evidenced by patchy regions of defective isotope accumulation throughout their brain. The chronic cocaine users showed decreased relative CBF in the prefrontal cortex when compared with normal subjects. The repeated scans of some cocaine users, after 10 days of cocaine withdrawal, continued to show decreased relative CBF of the prefrontal cortex. We hypothesise that some of the widespread defects in CBF in the cocaine users could reflect the effects of vasospasm in cerebral arteries exposed chronically to the sympathomimetic actions of cocaine.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1988 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. & Durrell, J. (1984) Cocaine: a growing public health problem. In Cocaine: Pharmacology, Effects and Treatment of Abuse, pp. 914. Rockville: National Institute on Drug Abuse Research Monographs.Google Scholar
Ambre, J. J., Ruo, T. H., Smith, G. L., Backes, D. & Smith, C. M. (1982) Ecgonine methyl ester, a major metabolite of cocaine. Journal of Analytical Toxicology, 6, 2629.CrossRefGoogle Scholar
American Psychiatric Association (1980) Diagnostic and Statistical Manual of Mental Disorders (3rd edn) (DSM–III). Washington: American Psychiatric Association.Google Scholar
Barth, C. W., Bray, M. R. III & Roberts, W. C. (1986) Rupture of the ascending aorta during cocaine intoxication. American Journal of Cardiology, 57, 496.Google Scholar
Baxter, L., Phelps, M., Mazziotta, J., Schwartz, J. M., Gerner, R. H., Selin, S. E. & Sumida, R. M. (1985) Cerebral metabolic rates for glucose in mood disorders. Archives of General Psychiatry, 42, 441447.CrossRefGoogle ScholarPubMed
Brust, J. D. & Richter, R. W. (1977) Stroke associated with cocaine abuse. New York State Journal of Medicine, 77, 14731475.Google ScholarPubMed
Cahil, D. W. & Knip, H. I. (1981) Intracranial hemorrhage with amphetamine abuse. Neurology, 31, 10581059.CrossRefGoogle Scholar
Chitwood, D. (1985) Patterns and consequences in cocaine use. In Cocaine Use in America: Epidemiologic and clinical perspectives (eds Kozel, N. J. & Adams, E. H.), pp. 111129. Rockville: NIDA Research Monographs.Google Scholar
Citron, B. P., Halpern, M., McCaron, M., Lundberc, G., McCormick, R., Pincus, I. J., Tatter, D. & Haverback, B. (1970) Necrotizing angiitis associated with drug abuse. New England Journal of Medicine, 283, 10031011.CrossRefGoogle ScholarPubMed
Clark, C., Carson, R. & Kessler, R. (1985) Alternate statistical models for the examination of clinical PET/FDG data. Journal of Cerebral Blood Flow and Metabolism, 5, 142150.Google Scholar
Cregler, L. L. & Mark, H. (1987) Relation of stroke to cocaine abuse. New York State Journal of Medicine (in press).Google Scholar
Cregler, L. L. & Mark, H. (1986) Medical complications of cocaine abuse. New England Journal of Medicine, 315, 14951500.CrossRefGoogle ScholarPubMed
Dachis, Ch. A. & Gold, M. (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neuroscience Behavioral Reviews, 9, 464477.Google Scholar
Delaney, P. & Estes, M. (1980) Intracranial hemorrhage with amphetamine abuse. Neurology, 30, 11251128.CrossRefGoogle ScholarPubMed
Gawin, F. H. & Kleber, H. (1984) Cocaine abuse treatment. Archives of General Psychiatry, 41, 903909.Google Scholar
Gawin, F. H. & Kleber, H. (1986) Abstinence symptomatology and psychiatric diagnosis in chronic cocaine abusers. Archives of General Psychiatry, 43, 107113.CrossRefGoogle Scholar
Gill, J. F., Zezulka, A. V., Shipley, M. J., Surinder, K., Gill, M. B. & Beevers, D. G. (1986) Stroke and alcohol consumption. New England Journal of Medicine, 313, 10441045.Google Scholar
Goeders, N. E. & Smith, J. E. (1983) Cortical dopaminergic involvement in cocaine reinforcement. Science, 221, 773775.Google Scholar
Golbe, L. I. & Merkin, M. D. (1986) Cerebral infarction in a user of freebase cocaine (“crack”). Neurology, 36, 16021604.CrossRefGoogle Scholar
Grabowski, J. & Dworkin, S. I. (1985) An overview of current issues. International Journal of Addiction, 20, 10651088.CrossRefGoogle ScholarPubMed
Haiz, W. L. (1973) Statistics for the Social Sciences. New York: Holt Reinhart and Winston.Google Scholar
Hillbom, M. & Kaste, M. (1981) Ethanol intoxication: a risk factor for ischemic brain infarction in adolescents and young adults. Stroke, 12, 422425.Google Scholar
Howard, B. E., Ginsberg, M. D., Hassel, W. R., Lockwood, A. H. & Freed, P. H. (1983) On the uniqueness of cerebral blood flow measured by the in vivo autoradiographic strategy and positron emission tomography. Journal of Cerebral Blood Flow and Metabolism, 3, 432441.CrossRefGoogle ScholarPubMed
Howard, R. E., Hueter, D. C. & Davis, G. J. (1985) Acute myocardial infarction following cocaine abuse in a young woman with normal coronary arteries. Journal of the American Medical Association, 254, 9596.Google Scholar
Isner, M. J., Estes, M. N., Thompson, P. D., Constanzo-Nordin, M. R., Subramanian, R., Miller, G., Katsas, G., Sweeney, K. & Sturner, W. (1986) Acute cardiac events temporally related to cocaine abuse. New England Journal of Medicine, 315, 14381443.CrossRefGoogle ScholarPubMed
Jaffe, J. H. (1975) Drug addiction and drug abuse. In The Pharmacological Basis of Therapeutics, pp. 283324. New York: Macmillan.Google Scholar
Jones, R. T. (1984) The pharmacology of cocaine. In Cocaine-Pharmacology, Effects and Treatment of Abuse, pp. 3452. Rockville: National Institute on Drug Abuse Research Monographs.Google Scholar
Khantzian, E. J. (1985) The self medication hypothesis of addictive disorder: focus on heroin and cocaine dependence. American Journal of Psychiatry, 142, 12591264.Google Scholar
Langston, W. J. & Langston, E. B. (1986) Neurological consequences of drug abuse. In Diseases of the Nervous System (eds Asburg, A. K., McKhann, G. M. & McDonald, W. I.), pp. 13331340. Philadelphia: W. B. Saunders Company.Google Scholar
Leeds, N. E., Malhotra, V. & Zimmerman, R. D. (1983) The radiology of drug addiction affecting the brain. Seminars in Roentgenology, 18, 227233.CrossRefGoogle ScholarPubMed
Lichtenfeld, P. J., Rubin, D. B. & Feldman, R. S. (1984) Subarachnoid hemorrhage precipitated by cocaine snorting. Archives of Neurology, 41, 223224.CrossRefGoogle ScholarPubMed
Margolis, M. T. & Newton, T. H. (1971) Methamphetamine arteritis. Neuroradiology, 2, 179182.CrossRefGoogle ScholarPubMed
Matsui, T. & Hirano, A. (1978) An Atlas of the Human Brain for Computerized Tomography. Stuttgart: Gustav Fischer.Google Scholar
Mazziotta, J. C., Sung-Cheng, H., Phelps, M. E., Carson, R. E., MacDonald, N. & Mahoney, K. (1985) A noninvasive positron computed tomography technique using 15oxygen-labeled water for the evaluation of neurobehavioral task batteries. Journal of Cerebral Blood Flow and Metabolism, 5, 7078.CrossRefGoogle Scholar
Mullani, N. A., Wond, W. H., Hartz, R. K., Yerian, K., Philippe, E. A. & Gould, K. L. (1982) Design of TOFPET: a high resolution time of flight positron camera. IEEE Transactions of Nuclear Science, 29, 3134.Google Scholar
Mullani, N. A., Gaeta, J., Yerian, K., Wong, W. H., Hartz, R. K., Philippe, E. A., Bristow, D. & Gould, K. L. (1984) Dynamic imaging with big resolution time-of-flight PET camera – TOFPET I. IEEE Transactions of Nuclear Science, 31, 609613.Google Scholar
Phillips, P. E., Altshuler, H. L., Sanders, D. W. & Burch, N. R. (1975) The effects of chronic cocaine hydrochloride administration on the primate electroencephalogram. Proceedings of the Society for Neuroscience, 1, 284.Google Scholar
Post, R. M. (1975) Cocaine psychoses: a continuum model. American Journal of Psychiatry, 132, 225231.Google ScholarPubMed
Prohovnik, I., Hakansson, K. & Risberg, J. (1980) Observations on the functional significance of regional cerebral blood flow in resting normal subjects. Neuropsychology, 18, 203217.Google Scholar
Raichle, M. E., Martin, W. R., Herscovitch, P., Minton, M. A. & Markham, P. (1983) Brain blood flow measured with intravenous H2 150. Journal of Nuclear Medicine, 24, 790798.Google Scholar
Reivich, M., Alavi, A., Fowler, J., Russell, J., Arnett, C., MacGregor, R., Shyse, C., Atkins, H., Anand, A., Dann, R. & Greenberg, J. (1985) Glucose metabolic rate kinetic model parameter determination in man: the lumped constants for 18F-fluorodeoxyglucose and 11C-deoxyglucose. Journal of Cerebral Blood Flow and Metabolism, 5, 179192.CrossRefGoogle Scholar
Rowbotham, M. C., Jones, R. T., Benowitz, N. L. & Jacob, P. (1984) Trazodone–oral cocaine interactions. Archives of General Psychiatry, 41, 895899.Google Scholar
Rumbaugh, C., Bergeron, T., Scanlan, R., Teal, J. S., Segall, H. D., Fang, H. C. & McCormick, R. (1971a) Cerebral vascular changes secondary to amphetamine abuse in the experimental animal. Radiology, 101, 345351.Google Scholar
Rumbaugh, C., Bergeron, T., Fang, H. & McCormick, R. (1971a) Cerebral angiographic changes in the drug abuse patient. Radiology, 101, 335344.CrossRefGoogle ScholarPubMed
Rumbaugh, C., Bergeron, T., Fang, H., Wilson, G., Higgins, R. & Mestek, M. (1980) Cerebral CT finding in drug abuse: clinical and experimental observations. Journal of Computer Assisted Tomography, 4, 330334.CrossRefGoogle ScholarPubMed
Sanerjee, S. P., Sharma, V. K., Kino-Cheung, L. S., Changda, S. K. & Rigg, S. J. (1979) Cocaine and d-amphetamine induced changes in central β-adrenoreceptor sensitivity: effects of acute and chronic drug treatment. Brain Research, 75, 119130.Google Scholar
Schachne, J. S., Roberts, B. H. & Thompson, P. D. (1984) Coronary artery spasm and myocardial infarction associated with cocaine use. New England Journal of Medicine, 310, 16651666.Google Scholar
Schnoll, S. H., Daghestani, A. M. & Hansen, T. R. (1984) Cocaine dependence. Residents and Staff Physician, 30, 2431.Google Scholar
Schwartz, K. A. & Cohen, J. A. (1984) Subarachnoid hemorrhage precipitated by cocaine snorting. Archives of Neurology, 41, 705.Google Scholar
Siegel, R. K. (1982) Cocaine smoking. Journal of Psychoactive Drugs, 14, 321337.CrossRefGoogle ScholarPubMed
Siesjo, B. K. (1978) Brain Energy Metabolism. New York: John Wiley & Sons.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1980) Statistical Methods (7th edn). Ames, Iowa: Iowa State Press.Google Scholar
Tuchman, A. J., Daras, M., Zalzal, P. & Mangiardi, J. (1987) Intracranial hemorrhage after cocaine abuse. Journal of the American Medical Association, 257, 1175.Google Scholar
Van Dyke, C., Barash, P. G., Jatlow, P. & Byck, R. (1976) Cocaine: plasma concentrations after intranasal application in man. Science, 191, 859861.CrossRefGoogle ScholarPubMed
Van Dyke, C., & Byck, R. (1982) Cocaine. Scientific American, 246, 128141.Google Scholar
Volkow, N. D., Brodie, J. D. & Gomez Mont, F. (1985a) Application of positron emission tomography to psychiatry. In Positron Emission Tomography (eds Reivich, M. & Alavi, A.), pp. 311328. New York: Alan R. Liss Inc.Google Scholar
Volkow, N. D., Mullani, N., Gould, K. L., Bolomey, L., Tewson, T., Berridge, M. & Reilly, E. (1985b) Cerebral blood flow response to stroboscopic light measured with positron emission tomography. European Journal of Nuclear Medicine, 11, A5.Google Scholar
Weiss, S. R., Raskind, R. & Morganstern, N. L. (1970) Intracerebral and subarachnoid hemorrhage following use of methamphetamine (speed). International Surgery, 53, 123127.Google Scholar
Wetli, C. V. & Wright, R. K. (1979) Death caused by recreational cocaine use. Journal of the American Medical Association, 241, 25192522.CrossRefGoogle ScholarPubMed
Young, J. Y., Cooper, D. R., Wellenstein, D. & Block, B. (1983) Cerebral angiitis and intracerebral hemorrhage associated with amphetamine abuse. Journal of Neurosurgery, 13, 109111.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.