Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T15:25:08.890Z Has data issue: false hasContentIssue false

Positron Emission Tomography in the Study of Brain Metabolism in Psychiatric and Neuropsychiatric Disorders

Published online by Cambridge University Press:  06 August 2018

C. J. Bench*
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital and School of Medicine, Pond Street, London NWS 2QG and Medical Research Council Cyclotron Unit, Hammersmith Hospital, London W12 0HS
R. J. Dolan
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital and School of Medicine, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG and Medical Research Council Cyclotron Unit, Hammersmith Hospital
K. J. Friston
Affiliation:
Academic Department of Psychiatry, Charing Cross and Westminster Hospitals and School of Medicine, Fulham Palace Road, London W6 8RF and Medical Research Council Cyclotron Unit, Hammersmith Hospital
R. S. J. Frackowiak
Affiliation:
Royal Postgraduate Medical School, Hammersmith Hospital, London W12 0NN and National Hospital for Neurology and Neurosurgery, Medical Research Council Cyclotron Unit, Hammersmith Hospital
*
Correspondence

Extract

Positron emission tomography (PET) differs fundamentally from computerised tomography (CT) and magnetic resonance imaging (MRI) in that it is a method for measuring function as opposed to structure. It is the most powerful tool available for the measurement of in-vivo brain function. This review describes the basic principles of the technique and its application to the study of brain metabolism in neurological and psychiatric disorder. The development of resting-state metabolic studies by the application of specific activation paradigms, a major current focus of the technique, is discussed.

Type
Research Article
Copyright
Copyright © Royal College of Psychiatrists, 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1980) Diagnostic and Statistical Manual of Mental Disorders (3rd edn) (DSM–III). Washington, DC: APA.Google Scholar
Baron, J. C., Bousser, M. G., Comar, D., et al (1981) Crossed cerebellar diaschisis in human supratentorial brain infarction. Transactions of the American Neurological Association, 105, 459461.Google Scholar
Baron, J. C., D'Antona, R., Pantona, P., et al (1986) Effects of thalamic stroke on.energy metabolism of the cerebral cortex. Brain, 109, 12431259.Google Scholar
Baron, J. C., Frackowiak, R. S. J., Herholz, K., et al (1989) Use of PET methods for measurement of cerebral energy metabolism and haemodynamics in cerebrovascular disease. Journal of Cerebral Blood Flow and Metabolism, 9, 723742.CrossRefGoogle ScholarPubMed
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., et al (1985) Cerebral metabolic rate for glucose in mood disorders. Archives of General Psychiatry, 42, 441447.Google Scholar
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., et al (1987) Local cerebral glucose metabolic rates in obsessive-compulsive disorder. Archives of General Psychiatry, 44, 211218.Google Scholar
Baxter, L. R., Schwartz, J. M., Mazziotta, J. C., et al (1988) Cerebral glucose metabolic rates in obsessive-compulsive disorder. American Journal of Psychiatry, 145, 15601563.Google Scholar
Baxter, L. R., Schwartz, J. M., Phelps, M. E., et al (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry, 46, 243250.Google Scholar
Blumer, D. & Benson, D. F. (1975) Personality changes with frontal and temporal lobe lesions. In Psychiatric Aspects of Neurologic Disease (eds Benson, D. F. & Blumer, D.). New York: Grune & Stratton.Google Scholar
Bogousslavsky, J., Ferrazzini, M., Regli, F., et al (1988) Manic delerium and frontal-like syndromes with paramedian infarction of the right thalamus. Journal of Neurology, Neurosurgery and Psychiatry, 51, 116119.Google Scholar
Brown, R. G. & MacCarthy, B. (1990) Psychiatric morbidity in patients with Parkinson's disease. Psychological Medicine, 20, 7787.Google Scholar
Buchsbaum, M. S., DeLisi, L. E., Holcomb, H. H., et al (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Archives of General Psychiatry, 41, 11591166.Google Scholar
Chase, T. N., Foster, N. L., Fedio, P., et al (1984a) Regional cortical dysfunction in Alzheimer's disease as determined by positron emission tomography. Annals of of Neurology, 15 (suppl.), s170–s174.Google Scholar
Chase, T. N., Foster, N. L., Fedio, P., et al (1984b) Gilles de la Tourette syndrome: studies with the fluorine-18-labelled fluorodeoxyglucose positron emission tomographic method. Annals of Neurology 15 (suppl.), s175.CrossRefGoogle Scholar
Cleghorn, J. M., Szechtman, H., Garnett, E. S., et al (1990) Apomorphine effects on brain metabolism in neuroleptic naïve first episode schizophrenics and normal controls. Schizophrenia Research, 3, 35.CrossRefGoogle Scholar
Cohen, R. M., Semple, W. E., Gross, M., et al (1987) Dysfunction in a prefrontal substrate of sustained attention in schizophrenia. Life Sciences, 40, 20312039.Google Scholar
Daniel, D. G., Weinberger, D. G., Breslin, N., et al (1990) The effects of dopamine agonists on CBF (133Xe dynamic SPECT) and negative symptoms in schizophrenia. Schizophrenia Research, 3, 28.CrossRefGoogle Scholar
D'Antona, R., Baron, J. C., Sanson, Y., et al (1985) Frontal cortex hypometabolism detected by positron emission tomography in patients with progressive supranuclear palsy. Brain, 108, 785799.CrossRefGoogle ScholarPubMed
Delisi, L. E., Holcomb, H., Cohen, R. M., et al (1985a) Positron emission tomography in schizophrenic patients with and without neuroleptic medication. Journal of Cerebral Blood Flow and Metabolism, 5, 201206.Google Scholar
Delisi, L. E., Buchsbaum, M. S., Holcomb, H. H., et al (1985b) Clinical correlates of decreased anteroposterior metabolic gradients in positron emission tomography (PET) of schizophrenic patients. American Journal of Psychiatry, 142, 7881.Google ScholarPubMed
Duara, R., Margolin, R. A., Robertson-Tchabo, E. A., et al (1983) Cerebral glucose utilisation as measured with positron emission tomography in 21 resting healthy men between the ages of 21 and 83 years. Brain, 106, 761775.Google Scholar
Flament, M. F., Whitaker, A., Rapoport, J. L., et al (1988) Obsessive compulsive disorder in adolescence: an epidemiologic study. Journal of the American Academy of Child and Adolescent Psychiatry, 27, 764772.Google Scholar
Foster, N. L., Chase, T. N., Mansi, L. et al (1984) Mapping of cortical abnormalities in Alzheimer's disease. Annals of Neurology, 16, 649654.CrossRefGoogle Scholar
Foster, N. L., Chase, T. N., Patronas, N. J., et al (1986) Cerebral mapping of apraxia in Alzheimer's disease by positron emission tomography. Annals of Neurology, 19, 139143.Google Scholar
Fox, P. T., Mintun, M. A., Reiman, E. M., et al (1988) Enhanced detection of focal brain responses using intersubject averaging and change distribution analysis of subtracted PET images. Journal of Cerebral Blood Flow and Metabolism, 8, 642653.Google Scholar
Frackowiak, R. S. J., Lenzi, G. L., Jones, T., et al (1980) Quantitative measurements of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. Journal of Computer Assisted Tomography, 4, 727736.Google Scholar
Frackowiak, R. S. J., Pozzilli, C., Legg, N. J., et al (1981) Regional cerebral oxygen supply and utilization in dementia: a clinical and physiological study with 15O and positron tomography. Brain, 104, 753778.CrossRefGoogle ScholarPubMed
Franck, G., Sadzot, B., Salmon, E. et al (1986) Regional cerebral blood flow and metabolic rates in human focal epilepsy and status epilepticus. In Advances in Neurology, 44, 935948.Google Scholar
Friedland, R. P., Mathis, C. A., Budinger, T. F., et al (1983) Regional cerebral metabolic alterations in alterations in dementia of the Alzheimer's type: positron emission tomography with [18F] fluorodeoxyglucose. Journals of Computer Assisted Tomogrpahy, 7, 590598.CrossRefGoogle Scholar
Friston, K. J., Passingham, R. E., Nutt, J. G., et al (1989) Localisation in PET images: direct fitting of the intercommissural (AC-PC) line. Journal of Cerebral Blood Flow and Metabolism, 9, 690695.Google Scholar
Friston, K. J., Frith, C. D., Liddle, P. F., et al (1990) The relationship between local and global changes in PET scans. Journal of Cerebral Blood Flow Metabolism, 10, 458466.Google Scholar
Geraud, G., Arne Bes, M. C., Guell, A., et al (1987) Reversibility of heamodynamic hypofrontality in schizophrenia. Journal of Cerebral Blood Flow and Metabolism, 7, 912.CrossRefGoogle Scholar
Gray, J. A. G. (1982) The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-hippocampal System. New York: Oxford University Press.Google Scholar
Gur, R. E., Resnick, S. M., Alavi, A., et al (1987a) Regional brain function in schizophrenia I. A positron emission study. Archives of General Psychiatry, 44, 119125.Google Scholar
Gur, R. E., Resnick, S. M., Gur, R. C., et al (1987b) Regional brain function in schizophrenia II. Repeated evaluation with positron emission tomography. Archives of General Psychiatry, 44, 126129.Google Scholar
Gustafson, L., Brun, A., Holmkvist, A. F., et al (1985) Regional cerebral blood flow in degenerative frontal lobe dementia of non-Alzheimer type. Journal of Cerebral Blood Flow and Metabolism, 5 (suppl. 1), 141142.Google Scholar
Hoffman, E. J., Huang, S. C. & Phelps, M. E. (1979) Quantitation in positron emission tomography: 1. Effects of object size. Journal of Computer Assisted Tomography, 3, 299308.Google Scholar
Huang, S. C., Hoffman, E. J., Phelps, M. E., et al (1979) Quantitation in positron emission tomography: 2. Effects of inaccurate attenuation correction. Journal of Computer Assisted Tomography, 3, 804814.CrossRefGoogle ScholarPubMed
Huxley, J. V. & Rapoport, S. I. (1986) Abnormalities of regional metabolism in Alzheimer's disease and their relation to functional impairment. Progress in Neuropsychopharmacology and Biological Psychiatry, 10, 427438.Google Scholar
Ingvar, D. H. & Franzen, G. (1974) Distribution of cerebral activity in chronic schizophrenia. Lancet, ii, 14841486.CrossRefGoogle Scholar
Kishimoto, H., Kuahara, H., Ohno, S., et al (1987) Three subtypes of chronic schizophrenia identified using 11C-glucose positron emission tomography. Psychiatry Research, 21, 285292.Google Scholar
Kiyosawa, W., Pappata, S., Duverger, D., et al (1987) Cortical hypometabolism and its recovery following nucleus basalis lesions in baboons: a PET study. Journal of Cerebral Blood Flow and Metabolism, 7, 812817.Google Scholar
Kling, A. S., Metter, E. J., Riege, W. H., et al (1986) Comparison of PET measurement of local brain glucose metabolism and CAT measurement of brain atrophy in chronic schizophrenia and depression. American Journal of Psychiatry, 143, 173180.Google Scholar
Kuhl, D. E., Metter, E. J., Riege, W. H., et al (1982) Effects of human ageing on patterns of local cerebral glucose utilisation determined by the (18-F) fluoro-deoxyglucose method. Journal of Cerebral Blood Flow Metabolism, 2, 163171.Google Scholar
Kuhl, D. E., Metter, E. J., Riege, W. H., et al (1985a) Determination of cerebral glucose utilization in dementia using positron emission tomography. Danish Medical Bulletin, 32 (suppl.), 5155.Google Scholar
Kuhl, D. E., Metter, E. J., Riege, W. H., et al (1985b) Patterns of cerebral glucose utilization in depression, multiinfarct dementia and Alzheimer's disease. In Brain Imaging and Brain Function (ed. Sokoloff, L.), pp. 211226. New York: Raven Press.Google Scholar
Kuwert, T., Hennerici, M., Langen, K-J., et al (1989) Patterns of cerebral glucose consumption in patients with thalamic infarction. Journal of Cerebral Blood Flow and Metabolism, 9 (suppl. 1), S330.Google Scholar
Lammertsma, A. A., Frackowiak, R. S. J. & Hoffman, J. M., et al (1989) The C15O2 build up technique to measure regional cerebral blood flow and volume of distribution of water. Journal of Cerebral Blood Flow and Metabolism, 9, 461470.Google Scholar
Liddle, P. F. (1987) The symptoms of chronic schizophrenia: a re-examination of the positive negative dichotomy. British Journal of Psychiatry, 151, 145151.Google Scholar
Liddle, P. F., Friston, K. J., Hirsch, S. R., et al (1990) Regional cerebral metabolic activity in chronic schizophrenia. Schizophrenia Research, 3, 23.Google Scholar
Martinot, J. L., Allilaire, J. F., Huret, J. D., et al (1989) Obsessive-compulsive disorder: a clinical, neuropsychological and PET study. Journal of Cerebral Blood Flow and Metabolism, 9 (suppl. 1), S588.Google Scholar
Mayberg, H. S., Starkstein, S. E., Boldue, P., et al (1989) Frontal lobe hypometabolism in depressed, non-demented patients with Parkinson's disease. Journal of Cerebral Blood Flow and Metabolism, 9 (suppl. 1), S346.Google Scholar
McCulloch, J., Savaki, H. E., McCulloch, M. C., et al (1982) The distribution of alterations in energy metabolism in the rat brain produced by apomorphine. Brain Research, 243, 6780.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1982) Slowly progressive aphasia without generalised dementia. Annals of Neurology, 11, 592598.Google Scholar
Mountz, J. N., Modell, J. G., Wilson, M. W., et al (1989) Positron emission tomographic evaluation of cerebral blood flow during state anxiety and in simple phobia. Archives of General Psychiatry, 46, 501504.Google Scholar
Neary, D., Snowden, J. S., Northen, B., et al (1988) Dementia of frontal lobe type. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 353361.CrossRefGoogle ScholarPubMed
Phelps, M. E., Huang, S. C., Hoffman, E. J., et al (1979) Tomographic measurement of local glucose metabolic rate in humans with (F-18) 2-flouro-2-deoxy-D-glucose: validation of method. Annals of Neurology, 6, 371388.Google Scholar
Phelps, M. E., Mazziotta, J. C., Baxter, L. R., et al (1984) Positron emission tomography study of affective disorders: problems and strategies. Annals of Neurology, 15 (suppl.), S149–S156.Google Scholar
Phelps, M. E., Mazziotta, J. C. & Schelberg, H. (1986) Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart. New York: Raven Press.Google Scholar
Post, R. M., DeLisi, L. E., Holcomb, H. H., et al (1987) Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biological Psychiatry 22, 545553.CrossRefGoogle ScholarPubMed
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980) Effects of lesions of cortical dopamine terminals on subcortical dopamine receptors in rats. Nature, 286, 7477.Google Scholar
Raichle, M. E., Martin, M. R. W., Herscovitch, P., et al (1983) Brain blood flow measured with intravenous H2 15O II: implementation and validation. Journal of Nuclear Medicine, 24, 790798.Google Scholar
Reiman, E. M., Raichle, M. E., Butler, F. K., et al (1984) A focal brain abnormality in panic disorder, a severe form of anxiety. Nature, 310, 683685.CrossRefGoogle ScholarPubMed
Reiman, E. M., Raichle, M. E., Robins, E., et al (1986) The application of positron emission tomography to the study of panic disorder. American Journal of Psychiatry, 143, 469477.Google Scholar
Reiman, E. M., Raichle, M. E., Robins, E., et al (1989a) Involvement of temporal poles in pathological and normal forms of anxiety. Journal of Blood Flow and Metabolism, 9 (suppl. 1), S589.Google Scholar
Reiman, E. M., Raichle, M. E., Robins, E., et al (1989b) Neuroanatomical correlates of a lactate induced anxiety attack. Archives of General Psychiatry, 46, 493500.CrossRefGoogle ScholarPubMed
Reivich, M., Kuhl, D., Wolf, A., et al (1979) The 18F-fluoro-deoxyglucose method for the measurement of local cerebral glucose utilisation in man. Circulation Research, 44, 127137.Google Scholar
Schiffer, R. B., Kurlan, R., Rubin, A., et al (1988) Evidence for atypical depression Parkinson's disease. American Journal of Psychiatry, 145, 10201022.Google ScholarPubMed
Schwartz, J. M., Baxter, L. R., Mazziotta, J. C., et al (1987) The differential diagnosis of depression. Relevance of positron emission studies of cerebral glucose metabolism to the bipolar-unipolar dichotomy. Journal of the American Medical Association, 258, 13681374.Google Scholar
Sheppard, G., Gruzelier, J., Manchanda, R., et al (1983) 15O positron emission tomographic scanning in predominantly never-treated acute schizophrenic patients. Lancet, ii, 11481152.Google Scholar
Siesjo, B. K. (ed.) (1978) Brain Energy Metabolism. New York: John Wiley.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1977) Research Diagnostic Criteria (RDC) for a Selected Group of Functional Disorders (3rd edn). New York: New York State Psychiatric Institute, Biometrics Research.Google Scholar
Swedo, S. E., Shapiro, M. B., Grady, C. L. et al (1989) Cerebral glucose metabolism in childhood onset obsessive-compulsive disorder. Archives of General Psychiatry, 46, 518523.Google Scholar
Szechtman, H., Nahmias, C., Garnett, S., et al (1988) Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Archives of General Psychiatry, 45, 523532.CrossRefGoogle ScholarPubMed
Talairach, J. & Tournaux, P. (1988) Coplanar Stereotaxis Atlas of the Human Brain. New York: Georg Thieme Verlag.Google Scholar
Ter-Pogossian, M. M. & Phelps, M. E. (1975) A positron emission transaxial tomograph for nuclear imaging (PETT). Radiology, 114, 8998.Google Scholar
Tomlinson, B. E., Blessed, G. & Roth, M. (1970) Observations on the brains of demented old people. Journal of Neurological Sciences, 11, 205242.Google Scholar
Tyrrell, P. J., Warrington, E. K., Frackowiak, R. S. J., et al (1990) Progressive degeneration of the right temporal lobe studied with positron emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry (in press).CrossRefGoogle Scholar
Uytdenhoef, P., Portelange, P., Jacquy, J., et al (1987) Regional cerebral blood flow and lateralised hemispheric dysfunction in depression. British Journal of Psychiatry, 143, 128132.Google Scholar
Videen, T. O., Perlmutter, J. S., Mintun, M. A., et al (1988) Regional correction of positron emission tomography data for the effects of cerebral atrophy. Journal of Cerebral Blood Flow and Metabolism, 8, 662670.Google Scholar
Volkow, N. D., Wolf, A. P., Van-Gelder, P., et al (1987) Phenomenological correlates of metabolic activity in 18 patients with chronic schizophrenia. American Journal of Psychiatry, 144, 151158.Google Scholar
Warkentin, S., Nilsson, A., Risberg, J., et al (1989) Absence of frontal lobe activation in schizophrenia. Journal of Cerebral Blood Flow and Metabolism, 9 (suppl.1), S354.Google Scholar
Weinberger, D. R., Berman, K. F. & Illowsky, B. P. (1988) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 45, 609615.Google Scholar
Wise, R. J. S., Bernardi, S., Frackowiak, R. S. J., et al (1983) Serial observations on the pathophysiology of acute stroke: the transition from ischaemia to infarction as reflected in the regional oxygen extraction. Brain, 106, 197222.Google Scholar
Wolkin, A., Angrist, B., Wolf, A., et al (1987) The effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology, 92, 241246.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.