Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:07:19.293Z Has data issue: false hasContentIssue false

Neurochemical and Pharmacological Properties of Tianeptine, A Novel Antidepressant

Published online by Cambridge University Press:  06 August 2018

C. Labrid*
Affiliation:
Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie, Cedex, France
E. Mocaër
Affiliation:
Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie, Cedex, France
A. Kamoun
Affiliation:
Institut de Recherches Internationales Servier, 6 place des Pléiades, 92415 Courbevoie, Cedex, France
*
Correspondence

Extract

Tianeptine is a tricyclic antidepressant with an unusual chemical structure (a long lateral chain grafted on to a substituted dibenzothiazepin nucleus), and with biochemical and animal-behavioural properties which are strikingly different from those of classical tricyclics. Unlike the latter, which decrease serotonin (5-HT) uptake, acute and chronic tianeptine treatment enhances 5-HT uptake in rat brain and in rat and human platelets ex vivo. In vivo, tianeptine potentiates the depletion of rat brain 5-HT by 4-methyl-alpha-ethyl metatyramine and increases rat hippocampal 5-HIAA; 5-HT uptake inhibitors (e.g. fluoxetine) have opposite effects. On iontophoretic injection into CA1 pyramidal cells, tianeptine shortens the period of neuronal hypoactivity caused by GABA or 5-HT, whereas other tricyclics prolong it, and it enhances attention, learning, and memory in laboratory animals, while classical tricyclics have opposite effects. However, the relationships between these effects of tianeptine in animal experiments and their relevance to clinical findings remain to be determined.

Type
Research Article
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbaccia, M. L., Gandolfi, O., Chuang, D. M., et al (1983) Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition sites. Proceedings of the National Academy of Sciences of the United States of America (Washington), 80, 51345138.Google ScholarPubMed
Béracochéa, D., Durkin, T. P. & Jaffard, R. (1986) On the involvement of the central cholinergic system in memory deficits induced by long term ethanol consumption in mice. Pharmacology, Biochemistry and Behavior, 24, 519524.CrossRefGoogle ScholarPubMed
Bersani, G., Pasini, A., Brancato, T., et al (1989) Serotonina e depressione: studio multicentrica controllato tianeptina versus amitriptilina. XXXVII Congresso Nazionale della Societa Italiana di Psichiatria, Roma, 6–11 febbraia 1989. CIC Edizioni Internationali, 1989, pp. 12431249.Google Scholar
Bouyer, J. J., Montaron, M. F. & Rougeul, A. (1981) Fast fronto-parietal rhythms during combined focused attentive behaviour and immobility in cat: cortical and thalamic localization. Electroencephalography and Clinical Neurophysiology, 51, 244252.CrossRefGoogle Scholar
Brunello, N., Riva, M., Volterra, A., et al (1987) Effect of some tricyclic and non tricyclic antidepressants on [3H] imipramine binding and serotonin uptake in rat cerebral cortex after prolonged treatment. Fundamental & Clinical Pharmacology, 1, 327333.Google Scholar
Carlsson, A., Corrodi, H., Fuxe, K., et al (1969) Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4 methyl α ethyl-metatyramine. European Journal of Pharmacology, 5, 357366.Google Scholar
Cassonne, M. C. & Molinengo, L. (1981) Action of thyroid hormones diazepam, caffeine and amitriptyline on memory decay (“forgetting”). Life Sciences, 29, 19831988.Google Scholar
Defrance, R., Marey, C. & Kamoun, A. (1988) Antidepressant and anxiolytic activities of tianeptine: an overview of clinical trials. Clinical Neuropharmacology, 11 (suppl. 2), S74–S82.Google ScholarPubMed
Delagrange, P., Bouyer, J. J., Durand, C., et al (1990) Action of tianeptine on focalization of attention in cat. Psychopharmacology, 102, 227233.CrossRefGoogle ScholarPubMed
De Simoni, M. G., De Luigi, A., Clavenna, A., et al (1991) In vivo studies on the enhancement of serotonin uptake by tianephine. Brain Research (in press).Google Scholar
Dresse, A. & Scuvée-Moreau, J. (1988) Electrophysiological effects of tianeptine on rat locus coeruleus, raphe dorsalis and hippocampus activity. Clinical Neuropharmacology, 11 (suppl. 2), S51–S58.Google ScholarPubMed
Fattaccini, C. M., Bolanos-Jimenez, F., Gozlan, H., et al (1990) Tianeptine stimulates 5-hydroxytryptamine uptake in vivo in the rat brain. Neuropharmacology, 29, 18.Google ScholarPubMed
Fuller, R. W., Perry, K. W. & Molloy, B. B. (1974) Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N methyl-3-phenylpropylamine (Lilly 110140). Life Sciences, 15, 11611171.Google Scholar
Fuller, R. W., Snoddy, H. D., Perry, K. W., et al (1978) Importance of duration of drug action in the antagonism of p-chloroamphetamine depletion of brain serotonin. Comparison of fluoxetin and chlorimipramine. Biochemical Pharmacology, 27, 193198.CrossRefGoogle ScholarPubMed
Guelfi, J. D., Pichot, P. & Dreyfus, J. F. (1989) Efficacy of tianeptine in anxious-depressed patients: results of a controlled multicenter trial versus amitriptyline. Neuropsychobiology, 22, 4148.CrossRefGoogle ScholarPubMed
Hamon, M., Bourgoin, S., Enjalbert, A., et al (1976) The effects of quipazine on 5-HT metabolism in the rat brain. Naunyn Schmiedeberg's Archives of Pharmacology, 294, 99108.Google Scholar
Hamon, M., Bourgoin, S. & Gozlan, H. (1989) Effet de la tianeptine sur la liberation in vitro de [3H] 5-HT et sur les divers types de récepteurs sérotoninergiques dans le système nerveux central chez le rat. Journal de Psychiatrie Biologique et Thérapeutique, special 3235, 4651.Google Scholar
Hano, J., Vetulani, J., Sansone, M., et al (1981) Changes in action of tricyclic and tetracyclic antidepressants: desipramine and mianserin, on avoidance behavior in the course of the chronic treatment. Psychopharmacology (Berlin), 73, 265268.CrossRefGoogle ScholarPubMed
Harms, H. H. (1983) The antidepressant agents desipramine, fluoxetine, fluvoxamine and norzimelidine inhibit uptake of 3H noradrenaline and 3H 5-hydroxy-tryptamine in slices of human and rat cortical brain tissue. Brain Research, 275, 99104.CrossRefGoogle ScholarPubMed
Jaffard, R., Mocaër, E., Poignant, J. C., et al (1991) Effects of tianeptine on spontaneous alternation, simple and concurrent spatial discrimination learning and on alcohol-induced alternation deficits in mice. Behavioral Pharmacology, 2, 3746.Google Scholar
Kato, G. & Weitsch, A. F. (1988) Neurochemical profile of tianeptine, a new antidepressant drug. Clinical Neuropharmacology, 11 (suppl. 2), S43–S50.Google ScholarPubMed
Labrid, C., Moleyre, J., Poignant, J. C., et al (1988) Structure-activity relationship for tricyclic antidepressants, with special reference to tianeptine. Clinical Neuropharmacology, 11 (suppl. 2), S21–S31.Google ScholarPubMed
Lalonde, R. & Vikis-Frenberg, V. (1985) Manipulations of 5-HT activity and memory in the rat. Pharmacology, Biochemistry & Behavior, 22, 377382.CrossRefGoogle ScholarPubMed
Lôo, H., Malka, R., Defrance, R., et al (1988) Tianeptine and amitriptyline: controlled double-blind trial in depressed alcohol patients. Neuropsychobiology, 19, 7985.Google Scholar
Manias, B. & Taylor, D. A. (1983) Inhibition of in vitro amine uptake into rat brain synaptosomes after in vivo administration of antidepressants. European Journal of Pharmacology, 95, 305309.Google Scholar
Mennini, T., Mocaër, E. & Garattini, S. (1987) Tianeptine, a selective enhancer of serotonin uptake in rat brain. Naunyn Schmiedeberg's Archives of Pharmacology (Berlin), 336, 478482.Google ScholarPubMed
Mocaër, E., Rettori, M. C. & Kamoun, A. (1988) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clinical Neuropharmacology, 11 (suppl. 2), S32–S42.Google Scholar
Ögren, S. O., Ross, S. B., Holm, A. C., et al (1977) 5-hydroxytryptamine and avoidance performance in the rat. Antagonism of the acute effect of p-chloro-amphetamine by zimelidine, an inhibitor of 5-hydroxytryptamine uptake. Neuroscience Letters, 7, 331336.Google Scholar
Peroutka, S. J. & Snyder, S. H. (1980) Long-term antidepressant treatment decreases spiroperidol labeled serotonin receptor binding. Science, 210, 88.CrossRefGoogle ScholarPubMed
Poignant, J. C. (1981) Etude pharmacologique d'un nouvel antidépresseur: la tianeptine. In Biological Psychiatry (eds Perris, C., Struwe, G. & Jansson, B.). Amsterdam: Elsevier.Google Scholar
Robinson, S. E. (1984) Serotonergic control of central cholinergic neurons. In Dynamics of Neurotransmitter Function (ed. Hanin, I.). New York: Raven Press.Google Scholar
Scuvée-Moreau, J. J. & Dresse, A. E. (1979) Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons of the rat. European Journal of Pharmacology, 57, 219225.Google Scholar
Scuvée-Moreau, J. J. & Dresse, A. E. (1982) Effect of trazodone on the firing rate of central monoaminergic neurons. Comparison with various antidepressants. Archives Internationales de Pharmacodynamic et de Thérapie, 260, 299301.Google Scholar
Sulser, F., Vetulani, J. & Mobley, P. L. (1978) Mode of action of antidepressant drugs. Biochemical Pharmacology, 27, 257261.CrossRefGoogle ScholarPubMed
Weiss, C., Gorceix, A., Kindynis, S., et al (1981) Etude contrôlée à double insu versus nomifensine de l'activité et du délai d'action d'un nouvel antidépresseur, la tianeptine. In Biological Psychiatry in Biological Psychiatry, (eds Perris, C., Struwe, G. & Jansson, B.). Amsterdam: Elsevier.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.