Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T13:08:44.323Z Has data issue: false hasContentIssue false

Human Sleep, Sleep Loss and Behaviour

Implications for the Prefrontal Cortex and Psychiatric Disorder

Published online by Cambridge University Press:  03 January 2018

J. A. Horne*
Affiliation:
Sleep Research Laboratory, Loughborough University, Loughborough, Leicestershire LE11 3TU

Extract

The prefrontal cortex (PFC) consists of the cortex lying in front of the primary and secondary motor cortex, and includes the dorsolateral and orbital areas, frontal eye fields, and Broca's area. Not all of the functions of the PFC are known, but key ones are the maintenance of wakefulness and non-specific arousal, and the recruiting of various cortical areas required to deal with tasks in hand (Luria, 1973; Stuss & Benson, 1986; Fuster, 1989). Other roles include (Kolb & Whishaw, 1985) planning, sensory comparisons, discrimination, decisions for action, direction and maintenance of attention at a specific task, execution of associated scanning eye movements, and initiation and production of novel goal-directed behaviour (especially with speech). Of the senses, vision makes a particular demand of the PFC, and this is reflected by the frontal eye fields.

Type
Point of View
Copyright
Copyright © The Royal College of Psychiatrists 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C. (1989) Neural mechanisms of negative symptoms. British Journal of Psychiatry, 155 (suppl. 7), 9398.Google Scholar
Andreasen, N. C., Ehrhardt, J. C., Swayze, V. W., et al (1990) Magnetic resonance imaging of the brain in schizophrenia. Archives of General Psychiatry, 47, 3544.Google Scholar
Ariel, R. N., Golden, C. J., Berg, R. A., et al (1983) Regional cerebral blood flow in schizophrenics. Archives of General Psychiatry, 40, 258263.Google Scholar
Barnes, T. R. E., (ed.) (1989) Negative symptoms in schizophrenia. British Journal of Psychiatry, 155 (suppl. 7), 1135.Google Scholar
Banderet, L. E., Stokes, J. W., Francesconi, R., et al (1981) Artillery teams in simulated sustained combat: performance and other measures. In Biological Rhythms, Sleep and Shift Work (ed. Johnson, L. C.), pp. 459477. New York: Spectrum.Google Scholar
Baxter, L. R., Schwartz, J. M., Phelps, M. E., et al (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Archives of General Psychiatry, 46, 243250.CrossRefGoogle ScholarPubMed
Bench, C. J., Dolan, R. J., Friston, K. J., et al (1990) Positron emission tomography in the study of brain metabolism in psychiatric and neuropsychiatric disorders. British Journal of Psychiatry, 157 (suppl. 9), 8295.Google Scholar
Benson, K. L., Csernansky, J. G. & Zarcone, V. P. (1990) BPRS symptoms and sleep variables in schizophrenia. Sleep Research, 19, 158.Google Scholar
Benson, K. L., Faull, K. F. & Zarcone, V. P. (1991) Evidence for the role of serotonin in the regulation of slow wave sleep in schizophrenia. Sleep, 14, 133139.Google Scholar
Berman, K. F., Zec, R. F. & Weinberger, D. R. (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia: 2. Role of neuroleptic treatment, attention, and mental effort. Archives of General Psychiatry, 43, 126135.CrossRefGoogle ScholarPubMed
Berman, K. F., & Weinberger, D. R. (1990) The prefrontal cortex in schizophrenia and other neuropsychiatric diseases: in vivo physiological correlates of cognitive deficits. Progress in Brain Research, 85, 521537.CrossRefGoogle ScholarPubMed
Blagrove, M., Alexander, C. & Horne, J. (1991) The effects of sleep deprivation on a test of field-independence. Sleep Research, 20A, 458.Google Scholar
Bliss, E. L., Clark, L. D. & West, C. D. (1959) Studies of sleep deprivation - relationship to schizophrenia. Archives of Neurology, 81, 348359.CrossRefGoogle ScholarPubMed
Bosch, R. J. van den & Rosendaal, N. (1988) Subjective cognitive dysfunction, eye tracking, and slow brain potentials in schizophrenic and schizoaffective patients. Biological Psychiatry, 24, 741746.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Mendelson, W. B., Duncan, W. C., et al (1982) Topographical cortical mapping of EEG sleep states during daytime naps in normal subjects. Sleep, 5, 248255.Google Scholar
Buchsbaum, M. S., DeLisi, L. E., Halcomb, H. H., et al (1984) Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Archives of General Psychiatry, 41, 11591166.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Gillin, J. C., Wu, J., et al (1989) Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sciences, 45, 13491356.Google Scholar
Buchsbaum, M. S., Neuchterlein, K. H., Haier, R. J., et al (1990) Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron emission tomography. British Journal of Psychiatry, 156, 216227.Google Scholar
Crow, T. J. (1980) Molecular pathology of schizophrenia: more than one disease process? British Medical Journal, 280, 6668.CrossRefGoogle ScholarPubMed
Crow, T. J. (1989) The type 2 syndrome. British Journal of Psychiatry, 155 (suppl. 7), 1520.CrossRefGoogle Scholar
David, A. S. & Cutting, J. C. (1990) Affect, affective disorder and schizophrenia. A neuropsychological investigation of right hemisphere function. British Journal of Psychiatry, 156, 491495.CrossRefGoogle ScholarPubMed
DeKosky, S. T. & Bass, N. H. (1982) Aging, senile dementia and the intralaminar microchemistry of cerebral cortex. Neurology, 32, 12271233.CrossRefGoogle ScholarPubMed
Feinberg, I. & Hiatt, J. F. (1979) Sleep patterns in schizophrenia: a selective review. In Sleep Disorders, Diagnosis and Treatment (eds Williams, R. L., Karacan, I. & Frazier, S. H.), pp. 205231. New York: Wiley Google Scholar
Frith, C. D. & Done, D. J. (1988) Towards a neuropsychology of schizophrenia. British Journal of Psychiatry, 153, 437443.CrossRefGoogle ScholarPubMed
Fuster, J. M. (1989) The Prefrontal Cortex. New York: Raven Press.Google Scholar
Ganguli, R., Reynolds, C. F. & Kupfer, D. J. (1987) Electroencephalographic sleep in young, never-medicated schizophrenics. Archives of General Psychiatry, 44, 3644.CrossRefGoogle ScholarPubMed
Gur, R. C., Gur, R. E., Obrist, W. O., et al (1987) Age and regional cerebral blood flow at rest and during cognitive activity. Archives of General Psychiatry, 44, 617621.Google Scholar
Hawkins, D. R., Taub, J. M. & Castle, R. L., van de (1985) Extended sleep (hypersomnia) in young depressed patients. American Journal of Psychiatry, 142, 905910.Google ScholarPubMed
Hawton, K., Shepstone, B., Soper, N., et al (1990) Single-photon emission computerised tomography (SPECT) in schizophrenia. British Journal of Psychiatry, 156, 425427.Google Scholar
Herscovitch, J., Stuss, D. & Broughton, R. (1980) Changes in cognitive processing following short-term cumulative partial sleep deprivation and recovery oversleeping. Journal of Clinical Neuropsychology, 2, 301319.CrossRefGoogle Scholar
Hiatt, J. F., Floyd, T. C., Katz, P. H., et al (1985) Further evidence of abnormal non-rapid eye movement sleep in schizophrenia. Archives of General Psychiatry, 42, 797802.Google Scholar
Horne, J. A. (1988a) Sleep loss and divergent thinking ability. Sleep, 11, 528536.Google Scholar
Horne, J. A. (1988b) Why We Sleep: the Functions of Sleep in Humans and Other Mammals. Oxford: Oxford University Press.Google Scholar
Horne, J. A. & Pettitt, A. N. (1985) High incentive effects on vigilance performance during 72 hours' total sleep deprivation. Acta Psychologica, 58, 123139.Google Scholar
Kaiya, H., Uematsu, M., Ofuji, M., et al (1989) Computerised tomography in schizophrenia-familial versus non-familial forms of illness. British Journal of Psychiatry, 155, 444450.Google Scholar
Kammen, D. P., van, Kammen, W. B., van Peters, J., et al (1988) Decreased slow wave sleep and enlarged lateral ventricles in schizophrenia. Neuropsychopharmacology, 1, 265271.Google Scholar
Keshavan, M. S., Reynolds, C. F. & Kupfer, D. (1990) Electroencephalographic sleep in schizophrenia: a critical review. Comprehensive Psychiatry, 30, 3447.CrossRefGoogle Scholar
Kolb, B. & Whishaw, I. Q. (1985) Fundamentals of Human Neuropsychology (2nd edn). San Francisco: W. H. Freeman.Google Scholar
Kollar, E. J., Slater, G. R., Palmer, J. O., et al (1966) Stress in subjects undergoing sleep deprivation. Medicine, 28, 101113.Google Scholar
Koranyi, E. K. & Lehmann, H. E. (1960) Experimental sleep deprivation in schizophrenic patients. Archives of General Psychiatry, 2, 534544.CrossRefGoogle ScholarPubMed
Kraepelin, E. (1919) Dementia Praecox and Paraphrenia. Edinburgh: Livingstone.Google Scholar
Kupfer, D. J., Ulrich, R. F., Coble, P. A., et al (1985) Electroencephalographic sleep of young depressives. Archives of General Psychiatry, 42, 806810.CrossRefGoogle Scholar
Kupfer, D. J., & Reynolds, C. F. (1989) Slow wave sleep as a protective factor. In Eating, Sleeping and Sex (eds Stunkard, A. J. & Baum, A.), pp. 131145. New Jersey: Lawrence Erlbaum.Google Scholar
Kupfer, D. J., Frank, E., McEachran, A. B., et al (1990) Delta sleep ratio-a biological correlate of early recurrence in unipolar affective disorder. Archives of General Psychiatry, 47, 11001105.Google Scholar
Luby, E. D. & Gottlieb, J. S. (1966) Sleep deprivation. In American Handbook of Psychiatry (ed. Arieti, S.), pp. 406419. New York: Basic Books.Google Scholar
Luby, E. D. & Caldwell, D. F. (1967) Sleep deprivation and EEG slow wave activity in chronic schizophrenia. Archives of General Psychiatry, 17, 361364.Google Scholar
Luria, A. R. (1973) The Working Brain. London: Penguin.Google Scholar
Maquet, P., Dive, D., Salmon, E., et al (1990) Cerebral glucose utilisation during sleep-wake cycle in man determined by positron emission tomography and [18F] 2-fluoro-2-deoxy-D-glucose method. Brain Research, 513, 136143.CrossRefGoogle ScholarPubMed
Mathew, R. J. (1989) Hyperfrontality of regional blood flow distribution in normals during resting wakefulness: fact or artifact? Biological Psychiatry, 26, 717724.Google Scholar
Milner, B. & Petrides, M. (1984) Behavioural effects of frontallobe lesions in man. Trends in Neurosciences, 7, 403407.Google Scholar
Morris, G. O., Williams, H. L. & Lubin, A. (1960) Misperception and disorientation during sleep deprivation. Archives of General Psychiatry, 2, 247254.CrossRefGoogle Scholar
Mortimer, A. M., Lund, C. E. & McKenna, P. J. (1990) The positive-negative dichotomy in schizophrenia. British Journal of Psychiatry, 157, 4149.Google Scholar
Naitoh, P., Johnson, L. C. & Lubin, A. (1971) A modification of surface negative slow potential (CNV) in the human brain after sleep loss. Electroencephalography and Clinical Neurophysiology, 30, 1722.Google Scholar
Nielsen, T., Godbout, R., Petit, D., et al (1991) Intrahemispheric EEG coherence: role of frontal lobe connections in EEG slow wave generation. Sleep Research, 20, 28.Google Scholar
Norton, R. (1970) The effects of acute sleep deprivation on selective attention. British Journal of Psychology, 61, 157161.Google Scholar
Parkin, A. J. & Walter, B. M. (1991) Aging, short-term memory and frontal dysfunction. Psychobiology, 19, 175179.CrossRefGoogle Scholar
Pettigrew, J. W., Keshavan, M., Panchalingham, K., et al (1992) Alterations in brain high energy phosphate and membrane phospholipid metabolism in first episode, drug naive schizophrenics. Archives of General Psychiatry (in press).CrossRefGoogle Scholar
Reynolds, G. P. (1989) Beyond the dopamine hypothesis the neurochemical pathology of schizophrenia. British Journal of Psychiatry, 155, 305316.CrossRefGoogle ScholarPubMed
Reynolds, C. F., Kupfer, D. J., Thase, M. E., et al (1990) Sleep, gender and depression: an analysis of gender effects on the electroencephalographic sleep of 302 depressed outpatients. Biological Psychiatry, 28, 673684.Google Scholar
Roland, P. E. (1984) Metabolic measurements of the working frontal cortex in man. Trends in Neuroscience, 7, 430435.CrossRefGoogle Scholar
Ross, E. D. (1981) The aprosodias. Archives of Neurology, 38, 561569.Google Scholar
Sawaya, R. & Ingvar, D. H. (1989) Cerebral blood flow and metabolism in sleep. Acta Neurologia Scandinavica, 80, 481491.Google Scholar
Scheibel, M. E., Lindsay, R. D., Tomiyasu, U., et al (1975) Progressive dendritic changes in aging human cortex. Experimental Neurology, 47, 392403.Google Scholar
Smith, G. N., Iacono, W. G., Moreau, M., et al (1988) Choice of comparison group and findings of computerised tomography in schizophrenia. British Journal of Psychiatry, 153, 667674.Google Scholar
Stuss, D. T. & Benson, D. F. (1986) The Frontal Lobes. New York: Raven Press.Google Scholar
Tandon, R., Shipley, J. E., Taylor, S., et al (1992) Electroencephalographic sleep in schizophrenia. Archives of General Psychiatry, 49, 185194.CrossRefGoogle ScholarPubMed
Taylor, M. A. & Abrahams, R. (1984) Cognitive impairment in schizophrenia. American Journal of Psychiatry, 141, 196201.Google ScholarPubMed
Thaker, G. K., Wagman, A. M. I. & Tamminga, C. A. (1990) Sleep polygraphy in: methodological issues. Biological Psychiatry, 28, 240246.Google Scholar
Webb, W. B. (1982) Sleep in older persons: sleep structures of 50 to 60 year old men and women. Journal of Gerontology, 37, 581586.CrossRefGoogle ScholarPubMed
Weintraub, S., Mesulam, M. M. & Kramer, L. (1981) Disturbances in prosody - a right hemisphere contribution to language. Archives of Neurology, 38, 742744.Google Scholar
Wu, J. C. & Bunney, W. E. (1990) The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. American Journal of Psychiatry, 147, 1421.Google Scholar
Submit a response

eLetters

No eLetters have been published for this article.