Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T15:10:37.777Z Has data issue: false hasContentIssue false

Neural basis of alertness and cognitive performance impairments during sleepiness II. Effects of 48 and 72 h of sleep deprivation on waking human regional brain activity

Published online by Cambridge University Press:  18 April 2006

Maria L. Thomas
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Helen C. Sing
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Gregory Belenky
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Henry H. Holcomb
Affiliation:
Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland, Baltimore, MD 21228, USA Department of Radiology, School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205-2179, USA
Helen S. Mayberg
Affiliation:
Rotman Research Institute and the Department of Medicine, University of Toronto, Toronto, Ont., Canada M6A 2E1
Robert F. Dannals
Affiliation:
Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205-2179, USA
Henry N. Wagner Jr.
Affiliation:
Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205-2179, USA
David R. Thorne
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Kathryn A. Popp
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Laura M. Rowland
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Amy B. Welsh
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Sharon M. Balwinski
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
Daniel P. Redmond
Affiliation:
Division of Neuropsychiatry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA

Abstract

Sleep deprivation impairs alertness and cognitive performance, and these deficits suggest decreases in brain activity and function, particularly in the prefrontal cortex, a region subserving alertness, attention, and higher-order cognitive processes and in the thalamus, a subcortical structure involved in alertness and attention. To substantiate this premise, we characterized the effects of 24, 48, and 72 h of progressive sleep deprivation on brain activity by assessing regional cerebral metabolic rate for glucose (CMRglu) during complex cognitive task performance in 17 young, normal, healthy male volunteers using positron emission tomography (PET) and l8Fluoro-2-deoxyglucose (18FDG). The results of prolonged sleep deprivation, 48 and 72 h, are reported here. Compared to rested baseline (RB), global CMRglu decreased by 6% at 48 and 72 h sleep deprivation (SD) and approximated the 8% decrease seen at 24 h SD. Absolute and relative regional CMRglu decreased at 48 and 72 h SD primarily in the prefrontal and parietal cortices and in the thalamus, the same areas that showed decreases at 24 h SD. Compared to 24 h SD, relative regional CMRglu decreased further in the prefrontal cortex and dorsal thalamus at 48 and 72 h, and at 72 h SD in a limited area of medial visual cortex. Relative regional CMRglu increased in lateral superior occipital cortices, lingual and fusiform gyri, anterior cerebellum, and in primary and supplementary motor cortices at 48 and 72 h SD, indicating a rebound CMRglu activity response from 24 h SD. Polysomnographic monitoring confirmed that subjects were awake. Behavioral outcomes showed continuing decreases in alertness, cognitive performance, and saccadic velocity (a measure of oculomotor response) with prolonged sleep deprivation. Progressive decreases in relative CMRglu values in prefrontal, thalamic, and primary visual areas were correlated positively with the impairments in cognitive performance and saccadic velocity across the 72 h sleep deprivation period. Relative thalamic activity was also correlated with the alterations in alertness. The prefrontal and thalamic regions were positively correlated, suggesting that sleep deprivation impacted these areas together as a functional network.

We propose that the decreases in CMRglu induced in the prefrontal-thalamic network by prolonged sleep deprivation underlie the decline in alertness and cognitive performance and signify the brain’s involuntary progression toward sleep onset, while the increases in visual and motor areas express the brain’s exertion of voluntary control to remain awake and perform. This exertion of voluntary control is manifest in increased subject effort and physical movement, and the recruitment of additional brain regions may reflect an attempt to sustain alertness and cognitive performance despite a continuing decline in prefrontal-thalamic activity. Our findings provide support for the notion of a specific sensitivity of the prefrontal cortex to, and a pivotal role of the thalamus in, sleepiness.

Type
Research Article
Copyright
Elsevier Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)