Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T20:09:42.385Z Has data issue: false hasContentIssue false

Evolution of the thalamus: a morphological and functional review

Published online by Cambridge University Press:  08 April 2008

Ann B. Butler*
Affiliation:
Dept of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, USA
*
Correspondence should be addressed to: Dr Ann B. Butler, Dept of Molecular Neuroscience, Krasnow Institute for Advanced Study, MSN 2A1, George Mason University, Fairfax VA 22030, USA Email: [email protected]

Abstract

Enlargement of the forebrain, including elaboration of the thalamus, has occurred independently within different groups of vertebrates. Dorsal and ventral thalamic territories can be identified in most vertebrates, with variations in the presence of GABAergic neuronal components. An inhibitory thalamic reticular nucleus-like input to the dorsal thalamus might be a common feature, as might the organizational plan of two divisions of the dorsal thalamus, the lemnothalamus and collothalamus. Differential, independent elaboration of these divisions occurred in mammals and sauropsids (reptiles and birds), making their evolutionary relationships challenging to discern. Not all of the crucial features identified for mammalian thalamocortical circuitry are present in other vertebrates, but birds share the most features identified to date. These include specific and nonspecific thalamic relay neurons, reciprocal pallial projections, and a GABAergic thalamic reticular nucleus with some but not all hodological features. Because birds share many higher-level cognitive abilities and, thus, possibly higher-level consciousness, with mammals, comparison of the thalamocortical (thalamopallial) circuitry might prove a fruitful resource for testing functional hypotheses. Comparisons with selected other vertebrates that likewise have relatively large brain:body ratios and also exhibit some cognitively sophisticated behaviors, such as cichlid fish, might also prove valuable.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amemiya, F. and Northcutt, R.G. (1996) Afferent and efferent connections of the central prosencephalic nucleus in the Pacific hagfish. Brain, Behavior and Evolution 47, 149155.CrossRefGoogle ScholarPubMed
Århem, P., Lindahl, I.B., Manger, P.R. and Butler, A.B. (2007) On the origin of consciousness – some amniote scenarios. In Liljenstrom, H. and Århem, P. (eds) Consciousness Transitions. Elsevier.Google Scholar
Baars, B.J. (2003) Working memory requires conscious process, not vice versa: a global workspace account. In Osaka, N. (ed) Neural Basis of Consciousness. John Benjamins Publishing Co., pp. 1126.CrossRefGoogle Scholar
Belekhova, M.G., Kratskin, I.L., Repérant, J., Pierre, J., Vesselkin, N.P., Kenigfest, N.B. et al. (1991) Localization of GABA-immunoreactive elements in the thalamus of the tortoise Emys orbicularis. Zhurnal Evoliutsionnoĭ Biokhimii i Fiziologii 27, 676685.Google Scholar
Bennis, M., Calas, A., Geffard, M. and Gamrani, H. (1991) Distribution of GABA immunoreactive systems in the forebrain and midbrain of the chameleon. Brain Research Bulletin 26, 891898.CrossRefGoogle ScholarPubMed
Bingman, V.P., Casini, G., Nocjar, C. and Jones, T-J. (1994) Connections of the piriform cortex in homing pigeons (Columba livia) studied with fast blue and WGA-HRP. Brain, Behavior and Evolution 43, 189205.CrossRefGoogle ScholarPubMed
Bodznick, D. and Northcutt, R.G. (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Research 298, 117124.CrossRefGoogle ScholarPubMed
Braford, M.R. Jr (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain, Behavior and Evolution 46, 259274.CrossRefGoogle ScholarPubMed
Braford, M.R. Jr, and Northcutt, R.G. (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In Davis, R.E. and Northcutt, R.G. (eds) Fish Neurobiology, Vol. 2: Higher Brain Areas and Functions. The University of Michigan Press, pp. 117163.Google Scholar
Brauth, S.E. and Kitt, C.A. (1980) The paleostriatal system of Caiman crocodilus. Journal of Comparative Neurology 189, 437465.CrossRefGoogle ScholarPubMed
Bruce, L.L. and Butler, A.B. (1984) Telencephalic connections in lizards. II. Projections to the anterior dorsal ventricular ridge. Journal of Comparative Neurology 229, 602615.CrossRefGoogle Scholar
Bruce, L.L. and Neary, T.J. (1995) The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain, Behavior and Evolution 46, 224234.CrossRefGoogle ScholarPubMed
Bullock, T.H. and Heiligenberg, W. (eds) (1986) Electroreception. John Wiley & Sons.Google Scholar
Butler, A.B. (1994a) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Research Reviews 19, 2965.CrossRefGoogle Scholar
Butler, A.B. (1994b) The evolution of the dorsal pallium of amniotes: cladistic analysis and a new hypothesis. Brain Research Reviews 19, 66101.CrossRefGoogle Scholar
Butler, A.B. (1995) The dorsal thalamus of jawed vertebrates: a comparative viewpoint. Brain, Behavior and Evolution 46, 209223.CrossRefGoogle ScholarPubMed
Butler, A.B. (2007a) Evolution of brains, cognition, and consciousness. Brain Research Bulletin. Epub ahead of print, doi:10.1016/j.brainresbull.2007.10.017Google Scholar
Butler, A.B. (2007b) The dual elaboration hypothesis of the evolution of the dorsal thalamus. In Krubitzer, L.A. and Kaas, J.H. (eds) Evolution of Nervous System in Mammals. Amsterdam, pp. 517523.CrossRefGoogle Scholar
Butler, A.B. and Cotterill, R.M.J. (2006) Mammalian and avian neuroanatomy and the question of consciousness in birds. Biological Bulletin 211, 106127.CrossRefGoogle ScholarPubMed
Butler, A.B. and Hodos, W. (2005) Comparative Vertebrate Neuroanatomy: Evolution and Adaptation, 2nd Edition.Wiley-Liss.CrossRefGoogle Scholar
Butler, A.B., Manger, P.R., Lindahl, I.B. and Århem, P. (2005) Evolution of the neural basis of consciousness: a bird-mammal comparison. BioEssays 27, 923936.CrossRefGoogle ScholarPubMed
Butler, A.B. and Molnár, Z. (2002) Development and evolution of the collopallium in amniotes: a new hypothesis of field homology. Brain Research Bulletin 57, 475479.CrossRefGoogle ScholarPubMed
Butler, A.B. and Northcutt, R.G. (1992) Retinal projections in the bowfin, Amia calva: Cytoarchitectonic and experimental analysis. Brain, Behavior and Evolution 39, 169194.CrossRefGoogle ScholarPubMed
Butler, A.B. and Northcutt, R.G. (1993) The diencephalon of the Atlantic herring, Clupea harengus. I. Cytoarchitectonic analysis. Journal of Comparative Neurology 328, 527546.CrossRefGoogle Scholar
Buzsáki, G. (2006) Rhythms of the Brain. Oxford University Press.CrossRefGoogle Scholar
Caballero-Bleda, M. (1988) Región alar del diencéfalo y mesencéfalo en el conejo : quimioarquitectonía de AChE y NADH-diaforasa como contribución a su neuroanatomíca comparada. PhD thesis, Universidad de Murcia.Google Scholar
Carretta, D., Sbriccoli, A., Santarelli, M., Pinto, F., Granato, A. and Minciacchi, D. (1996) Crossed thalamo-cortical and cortico-thalamic projections in adult mice. Neuroscience Letters 204, 6972.CrossRefGoogle ScholarPubMed
Carroll, R.L. (1988) Vertebrate Paleontology and Evolution. Freeman.Google Scholar
Collin, S.P. and Northcutt, R.G. (1995) The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field. Brain, Behavior and Evolution 45, 3453.CrossRefGoogle ScholarPubMed
Colombe, J.B., Sylvester, J., Block, J. and Ulinski, P.S. (2004) Subpial and stellate cells: two populations of interneurons in turtle visual cortex. Journal of Comparative Neurology 471, 333351.CrossRefGoogle ScholarPubMed
Crespo, C., Porteros, A., Arévalo, R., Briñón, J.G., Aijón, J. and Alonso, J.R. (1999) Distribution of parvalbumin immunoreactivity in the brain of the tench (Tinca tinca L., 1758). Journal of Comparative Neurology 413, 549571.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Csillag, A. and Montagnese, C.M. (2005) Thalamotelencephalic organization in birds. Brain Research Bulletin 66, 303310.CrossRefGoogle ScholarPubMed
De Miguel, E., Rodicio, M.C. and Anadón, R. (1990) Organization of the visual system in larval lampreys: an HRP study. Journal of Comparative Neurology 302, 529542.CrossRefGoogle ScholarPubMed
Dermon, C.R. and Barbas, H. (1994) Contralateral thalamic projections predominantly reach transitional cortices in rhesus monkey. Journal of Comparative Neurology 344, 508531.CrossRefGoogle ScholarPubMed
Díaz, C., Yáñes, C., Trujillo, C.M. and Puelles, L. (1994) The lacertidian reticular thalamic nucleus projects topographically upon the dorsal thalamus: experimental study in Gallotia galloti. Journal of Comparative Neurology 343, 193208.CrossRefGoogle ScholarPubMed
Dicke, U. (1999) Morphology, axonal projection pattern, and response types of tectal neurons in plethodontid salamanders. I: tracer study of projection neurons and their pathways. Journal of Comparative Neurology 404, 473488.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Dicke, U. and Mühlenbrock-Lenter, S. (1998) Primary and secondary somatosensory projections in direct-developing plethodontid salamanders. Journal of Morphology 238, 307326.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Dicke, U. and Roth, G. (2007) Evolution of the amphibian nervous system. In Kaas, J.H. and Bullock, T.H. (eds) Evolution of Nervous Systems: A Comprehensive Reference, Vol 2. Academic Press, pp. 61124.CrossRefGoogle Scholar
Dinopoulos, A. (1994) Reciprocal connections of the motor neocortical area with the contralateral thalamus in the hedgehog (Erinaceus europaeus) brain. European Journal of Neuroscience 6, 374380.CrossRefGoogle ScholarPubMed
Ebbesson, S.O.E. (1972) New insights into the organization of the shark brain. Comparative Biochemistry and Physiology 42A, 121129.CrossRefGoogle Scholar
Ebbesson, S.O.E. (1980a) On the organization of the telencephalon in elasmobranchs. In Ebbesson, S.O.E. (ed) Comparative Neurology of the Telencephalon. Plenum Press, pp. 116.CrossRefGoogle Scholar
Ebbesson, S.O.E. (1980b) The parcellation theory and its relationship to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Research 213, 179212.CrossRefGoogle Scholar
Ebbesson, S.O.E. and Campbell, C.B.G. (1973) On the organization of cerebellar efferent pathways in the nurse shark (Ginglymostoma cirratum). Journal of Comparative Neurology 152, 233254.CrossRefGoogle ScholarPubMed
Ebbesson, S.O.E. and Hodde, K.C. (1981) Ascending spinal systems in the nurse shark Ginglymostoma cirratum. Cell Tissue Research 216, 313331.CrossRefGoogle ScholarPubMed
Ebbesson, S.O.E., Jane, J.A. and Schroeder, D.M. (1972) A general overview of major interspecific variations in thalamic organization. Brain, Behavior and Evolution 6, 92130.CrossRefGoogle ScholarPubMed
Echteler, S.M. (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. Journal of Comparative Neurology 230, 536551.CrossRefGoogle Scholar
Edelman, G.M. (1992) Bright Air, Brilliant Fire. On the Matter of Mind. Basic Books.Google Scholar
Endepols, H., Roden, K., Luksch, H., Dicke, U. and Walkowiak, W. (2004) Dorsal striatopallidal system in anurans. Journal of Comparative Neurology 468, 299310.CrossRefGoogle ScholarPubMed
Evans, S.E. (2000) Amniote evolution. In Bock, G.R. and Cardew, G. (eds) Evolutionary Developmental Biology of the Cerebral Cortex. Novartis Foundation Symposium 228. Wiley, pp. 109113.Google Scholar
Fowler, M., Medina, L. and Reiner, A. (1999) Immunohistochemical localization of NMDA- and AMPA-type glutamate receptor subunits in the basal ganglia of red-eared turtles. Brain, Behavior and Evolution 54, 276289.CrossRefGoogle ScholarPubMed
Fiebig, E. and Bleckmann, H. (1989) Cell groups afferent to the telencephalon in a cartilaginous fish (Platyrhinoidis triseriata). A WGA-HRP study. Neuroscience Letters 105, 5762.CrossRefGoogle Scholar
Fritzsch, B. (1980) Retinal projections in European Salamandridae. Cell Tissue Research 213, 325341.CrossRefGoogle ScholarPubMed
Furlong, R.F. and Holland, P.W.H. (2002) Bayesian phylogenetic analysis supports monophyly of Ambulacraria and of cyclostomes. Zoological Science 19, 593599.CrossRefGoogle ScholarPubMed
Gamlin, P.D.R. and Cohen, D.H. (1986) A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon (Columba livia). Journal of Comparative Neurology 250, 296310.CrossRefGoogle Scholar
González, A., Moreno, N. and López, J.M. (2002) Distribution of NADPH-diaphorase/nitric oxide synthase in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. Brain, Behavior and Evolution 60, 80100.CrossRefGoogle ScholarPubMed
Gorr, T., Kleinschmidt, T. and Fricke, H. (1991) Close tetrapod relationship of the coelacanth Latimeria indicated by haemoglobin sequences. Nature 351, 394397.CrossRefGoogle ScholarPubMed
Granda, R.H. and Crossland, W.J. (1989) GABA-like immunoreactivity of neurons in the chicken diencephalon and mesencephalon. Journal of Comparative Neurology 287, 455469.CrossRefGoogle ScholarPubMed
Gregory, J.E., Iggo, A., McIntyre, A.K. and Proske, U. (1987) Electroreceptors in the platypus. Nature 326, 387.CrossRefGoogle ScholarPubMed
Grosenick, L., Clement, T.S. and Fernald, R.D. (2007) Fish can infer social rank by observation alone. Nature 445, 429432.CrossRefGoogle ScholarPubMed
Guillén, M. (1991) Estructura del epitálamo y complejo superior del tálamo dorsal en aves: estudio embriológico. Posibles homologias con mamíferos. PhD thesis, Universidad de Murcia.Google Scholar
Hall, J. and Feng, A.S. (1986) Neural analysis of temporally patterned sounds in the frog's thalamus: processing of pulse duration and pulse repetition rate. Neuroscience Letters 63, 215220.CrossRefGoogle ScholarPubMed
Hall, J.A., Foster, R.E., Ebner, F.F. and Hall, W.C. (1977) Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta). Brain Research 130, 197216.CrossRefGoogle Scholar
Hall, W.C. and Ebner, F.F. (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). Journal of Comparative Neurology 140, 101122.CrossRefGoogle ScholarPubMed
Harting, J.K., Updyke, B.V. and van Lieshout, D.P. (2001) Striatal projections from the cat visual thalamus. European Journal of Neuroscience 14, 893896.CrossRefGoogle ScholarPubMed
Hedges, S.B. and Poling, L.L. (1999) A molecular phylogeny of reptiles. Science 283, 9981001.CrossRefGoogle ScholarPubMed
Herrick, C.J. (1948) The brain of the tiger salamander Ambystoma tigrinum. The University of Chicago Press.CrossRefGoogle Scholar
Himstedt, W. and Manteuffel, G. (1985) Retinal projections in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona). Cell Tissue Research 239, 689692.CrossRefGoogle ScholarPubMed
Hollis, D.M. and Boyd, S.K. (2005) Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis. Brain, Behavior and Evolution 65, 127142.CrossRefGoogle ScholarPubMed
Hunter, M., Battilana, M., Bragg, T. and Rostas, J.A.P. (2000) EEG as a measure of developmental changes in the chicken brain. Developmental Psychobiology 36, 2328.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Ito, H., Murakami, T., Fukuoka, T. and Kishida, R. (1986) Thalamic fiber connections in a teleost (Sebastiscus marmoratus): visual, somatosensory, octaval, and cerebellar relay region to the telencephalon. Journal of Comparative Neurology 250, 215227.CrossRefGoogle Scholar
Jakway, J.S. and Riss, W. (1972) Retinal projections in the tiger salamander, Ambystoma tigrinum. Brain, Behavior and Evolution 5, 401442.CrossRefGoogle ScholarPubMed
Jiao, Y., Medina, L., Veenman, C.L., Toledo, C., Puelles, L., and Reiner, A. (2000) Identification of the anterior nucleus of the ansa lenticularis in birds as the homolog of the mammalian subthalamic nucleus. Journal of Neuroscience 20, 69987010.CrossRefGoogle ScholarPubMed
Jones, E.G. (2007) The Thalamus, 2nd Edition, Vol. II. Cambridge University Press.Google Scholar
Kaas, J.H. (1995) The evolution of isocortex. Brain, Behavior and Evolution 46, 187196.CrossRefGoogle ScholarPubMed
Kaas, J.H. (ed-in-chief) (2007) Evolution of Nervous Systems: A Comprehensive Reference. Academic Press.Google Scholar
Karten, H.J. (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Annals of the New York Academy of Sciences 167, 164179.CrossRefGoogle Scholar
Karten, H.J. (1997) Evolutionary developmental biology meets the brain: the origins of mammalian cortex. Proceedings of the National Academy of Sciences of the USA 94, 28002804.CrossRefGoogle Scholar
Karten, H.J., Hodos, W., Nauta, W.H.J. and Revzin, A.M. (1973) Neural connections of the ‘visual Wulst’ of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.CrossRefGoogle ScholarPubMed
Kenigfest, N., Belekhova, M., Repérant, J., Rio, J-P., Ward, R. and Vesselkin, N. (2005) The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus. Journal of Chemical Neuroanatomy 30, 129143.CrossRefGoogle ScholarPubMed
Kenigfest, N., Martínez-Marcos, A., Belekhova, M., Font, C., Lanuza, E., Desfilis, E. et al. (1997) A lacertilian dorsal retinorecipient thalamus: a re-investigation in the Old World lizard Podarcis hispanica. Brain, Behavior and Evolution 50, 313334.CrossRefGoogle ScholarPubMed
Kenigfest, N., Repérant, J., Rio, J.-P., Belekhova, M.G., Tumanova, N.L., Ward, R. et al. (1995) Fine structure of the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a Golgi, combined HRP tracing and GABA immunocytochemical study. Journal of Comparative Neurology 356, 595614.CrossRefGoogle ScholarPubMed
Kenigfest, N., Repérant, J., Rio, J-P., Belekhova, M.G., Ward, R., Vesselkin, N.P. et al. (1998) Retinal and cortical afferents to the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: a combined axonal tracing, glutamate, and GABA immunocytochemical electron microscopic study. Journal of Comparative Neurology 391, 470490.3.0.CO;2-Y>CrossRefGoogle Scholar
Kennedy, M.C. and Rubinson, K. (1977) Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. Journal of Comparative Neurology 171, 465479.CrossRefGoogle ScholarPubMed
Korzeniewska, E. and Güntürkün, O. (1990) Sensory properties and afferents of the n. dorsolateralis posterior thalami of the pigeon. Journal of Comparative Neurology 292, 457479.CrossRefGoogle Scholar
Kosareva, A.A. (1980) Retinal projections in lamprey (Lampetra fluviatilis). Journal für Hirnforschung 21, 243256.Google ScholarPubMed
Krubitzer, L.A. (2000) How does evolution build a complex brain? In Bock, G.R. and Cardew, G. (eds) Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Foundation Symposium 228. Wiley, pp. 206220.CrossRefGoogle Scholar
Kusunoki, T. and Amemiya, F. (1983) Retinal projections in the hagfish, Eptatretus burgeri. Brain Research 262, 295298.CrossRefGoogle ScholarPubMed
Laberge, F., Mühlenbrock-Lenter, S., Grunwald, W. and Roth, G. (2006) Evolution of the amygdala: new insights from studies in amphibians. Brain, Behavior and Evolution 67, 177187.CrossRefGoogle ScholarPubMed
Lauder, G.V. and Liem, K.F. (1983) The evolution and interrelationships of the actinopterygian fishes. Bulletin of the Museum of Comparative Zoology 150, 95197.Google Scholar
Liem, K.F., Bemis, W.E., Walker, W.F. Jr and Grande, L. (2001) Functional Anatomy of the Vertebrates: An Evolutionary Perspective. Harcourt College Publishers.Google Scholar
Llinás, R. and Paré, D. (1991) Coherent oscillations in specific and nonspecific thalamocortical networks and their role in cognition. In Steriade, M., Jones, E.G. and McCormick, D.A. (eds) Thalamus, Vol. II: Experimental and Clinical Aspects. Elsevier, pp. 501516.Google Scholar
Llinás, R., Ribary, U., Contreras, D. and Pedroarena, C. (1998) The neuronal basis for consciousness. Philosophical Transactions of the Royal Society of London 353, 18411849.Google ScholarPubMed
Llinás, R.R. and Steriade, M. (2006) Bursting of thalamic neurons and states of vigilance. Journal of Neurophysiology 95, 32973308.CrossRefGoogle ScholarPubMed
Llinás, R.R., Urbano, F.J., Leznik, E., Ramírez, R.R. and van Marle, H.J.F. (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends in Neurosciences 28, 325333.CrossRefGoogle ScholarPubMed
Lohman, A.H.M. and van Woerden-Verkley, I. (1978) Ascending connections to the forebrain in the tegu lizard. Journal of Comparative Neurology 182, 555594.CrossRefGoogle Scholar
Luo, M. and Perkel, D.J. (1999) A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. Journal of Neuroscience 19, 67006711.CrossRefGoogle ScholarPubMed
Luo, M. and Perkel, D.J. (2001) Intrinsic and synaptic properties of neurons in an avian thalamic nucleus during song learning. Journal of Neurophysiology 88, 19031914.CrossRefGoogle Scholar
Mancilla, J.G. and Ulinski, P.S. (2001) Role of GABA(A)-mediated inhibition in controlling the responses of regular spiking cells in turtle visual cortex. Visual Neuroscience 18, 924.CrossRefGoogle ScholarPubMed
Mallatt, J. and Sullivan, J. (1998) 28S and 18D rDNA sequences support the monophyly of lampreys and hagfishes. Molecular Biology and Evolution 15, 17061718.CrossRefGoogle Scholar
Martínez-de-la-Torre, M. (1985) Estructura del mesencéfalo y diencéfalo en aves y reptiles: aportaciones a una síntesis en la búsqueda de homologías. PhD thesis, Universidad de Murcia.Google Scholar
Matesz, C., Kulik, A. and Bacskai, T. (2002) Ascending and descending projections of the lateral vestibular nucleus in the frog Rana esculenta. Journal of Comparative Neurology 444, 115128.CrossRefGoogle ScholarPubMed
Medina, L., Veenman, L.C. and Reiner, A. (1997) Evidence for a possible avian dorsal thalamic region comparable to the mammalian ventral anterior, ventral lateral, and oral ventroposterolateral nuclei. Journal of Comparative Neurology 384, 86108.3.0.CO;2-H>CrossRefGoogle Scholar
Médina, M., Repérant, J., Dufour, S., Ward, R., Le Belle, N. and Miceli, D. (1994) The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla L.). Anatomy and Embryology 189, 2539.CrossRefGoogle ScholarPubMed
Molnár, Z. and Butler, A.B. (2002) The corticostriatal junction: a crucial region for forebrain development and evolution. BioEssays 24, 530541.CrossRefGoogle ScholarPubMed
Montagnese, C.M., Mezey, S.E. and Csillag, A. (2003) Efferent connections of the dorsomedial thalamic nuclei of the domestic chick (Gallus domesticus). Journal of Comparative Neurology 459, 301326.CrossRefGoogle ScholarPubMed
Montgomery, N.M. and Fite, K.V. (1991) Organization of ascending projections from the optic tectum and mesencephalic pretectal gray in Rana pipiens. Visual Neuroscience 7, 459478.CrossRefGoogle Scholar
Moreno, N. and González, A. (2004) Localization and connectivity of the lateral amygdala in anuran amphibians. Journal of Comparative Neurology 479, 130148.CrossRefGoogle ScholarPubMed
Moreno, N. and González, A. (2006) The common organization of the amygdaloid complex in tetrapods: new concepts based on developmental, hodological and neurochemical data in anuran amphibians. Progress in Neurobiology 78, 6190.CrossRefGoogle ScholarPubMed
Moreno, N., Morona, R., López, J.M., Muñoz, M. and González, A. (2005) Lateral and medial amygdala of anuran amphibians and their relation to olfactory and vomeronasal information. Brain Research Bulletin 66, 332336.CrossRefGoogle ScholarPubMed
Mpodozis, J., Cox, K., Shimizu, T., Bischoff, H.J., Woodson, W. and Karten, H.J. (1996) GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (Columba livia). Journal of Comparative Neurology 374, 204222.3.0.CO;2-6>CrossRefGoogle Scholar
Mudry, K.M. and Capranica, R.R. (1987) Correlations between auditory evoked responses in the thalamus and species-specific call characteristics. I: Rana catesbeiana (Anura, Ranidae). Journal of Comparative Physiology A 160, 477489.CrossRefGoogle ScholarPubMed
Mueller, T., Vernier, P. and Wullimann, M.F. (2006) A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse. Journal of Comparative Neurology 494, 620634.CrossRefGoogle ScholarPubMed
Mulligan, K.A. and Ulinski, P.S. (1990) Organization of geniculocortical projections in turtles: isoazimuth lamellae in the visual cortex. Journal of Comparative Neurology 296, 531547.CrossRefGoogle ScholarPubMed
Murakami, A. and Ito, H. (1985) Long ascending projections of the spinal dorsal horn in a teleost, Sebastiscus marmoratus. Brain Research 346, 168170.CrossRefGoogle Scholar
Murakami, T., Fukuoka, T. and Ito, H. (1986a) Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus. Journal of Comparative Neurology 247, 383397.CrossRefGoogle Scholar
Murakami, T., Ito, H. and Morita, Y. (1986b) Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis. Brain Research 382, 97103.CrossRefGoogle ScholarPubMed
Neary, T.J. (1974) Diencephalic efferents of the torus semicircularis in the bullfrog, Rana catesbeiana. Anatomical Record 178, 425.Google Scholar
Neary, T.J. and Northcutt, R.G. (1983) Nuclear organization of the bullfrog diencephalon. Journal of Comparative Neurology 213, 262278.CrossRefGoogle ScholarPubMed
Neary, T.J. and Wilczynski, W. (1977) Ascending thalamic projections from the obex region in ranid frogs. Brain Research 138, 529533.CrossRefGoogle ScholarPubMed
Nelson, J.S. (1994) Fishes of the World, 3rd Edition.John Wiley & Sons.Google Scholar
Nieuwenhuys, R. and Meek, J. (1990) The telencephalon of actinopterygian fishes. In Jones, E.G. and Peters, A. (eds) Cerebral Cortex, Vol. 8A: Comparative Structure and Evolution of Cerebral Cortex, Part I. Plenum Press, pp. 3173.Google Scholar
Nieuwenhuys, R., ten Donkelaar, H.J. and Nicholson, (1998) The Central Nervous System of Vertebrates. Springer.CrossRefGoogle Scholar
Northcutt, R.G. (1977) Retinofugal projections in the lepidosirenid lungfishes. Journal of Comparative Neurology 174, 553574.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (1978) Brain organization of the cartilaginous fishes. In Hodgson, E.S. and Mathewson, R.F. (eds) Sensory biology of Sharks, Skates, and Rays. Office of Naval Research, Department of the Navy.Google Scholar
Northcutt, R.G. (1979) Retinofugal pathways in fetal and adult spiny dogfish, Squalus acanthias. Brain Research 162, 219230.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (1980) Retinal projections in the Australian lungfish. Brain Research 185, 8590.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (1991) Visual pathways in elasmobranchs: organization and phylogenetic implications. Journal of Experimental Zoology Supplement 5, 97107.Google Scholar
Northcutt, R.G. (2006) Connections of the lateral and medial divisions of the goldfish telencephalic pallium. Journal of Comparative Neurology 494, 903943.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (2007) Forebrain evolution in bony fishes. Brain Research Bulletin, in press.Google Scholar
Northcutt, R.G. and Butler, A.B. (1991) Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Brain, Behavior and Evolution 37, 333354.CrossRefGoogle ScholarPubMed
Northcutt, R.G. and Butler, A.B. (1993a) Distribution of acetylcholinesterase reactivity in the diencephalon and optic tectum of the longnose gar, Lepisosteus osseus (L.). Brain, Behavior and Evolution 41, 5781.CrossRefGoogle Scholar
Northcutt, R.G. and Butler, A.B. (1993b) The diencephalon of the Atlantic herring, Clupea harengus. II. Retinofugal projections to the diencephalon and optic tectum. Journal of Comparative Neurology 328, 547561.CrossRefGoogle Scholar
Northcutt, R.G. and Kicliter, E.E. (1980) Organization of the amphibian telencephalon. In Ebbesson, S.O.E. (ed) Comparative Neurology of the Telencephalon. Plenum.Google Scholar
Northcutt, R.G. and Wicht, H. (1997) Afferent and efferent connections of the lateral and medial pallia of the silver lamprey. Brain, Behavior and Evolution 49, 119.CrossRefGoogle ScholarPubMed
Paz-y-Miño, G., Bond, A.B., Kamil, A.C. and Balda, R.P. (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430, 778781.CrossRefGoogle Scholar
Peake, T.M., Terry, A.M.R., McGregor, P.K. and Dabelsteen, T. (2001) Male great tits eavesdrop on similated male-to-male vocal interactions. Proceedings of the Royal Society London B 268, 11831187.CrossRefGoogle Scholar
Peake, T.M., Terry, A.M.R., McGregor, P.K. and Dabelsteen, T. (2002) Do great tits assess rivals by combining direct experience with information gathered by eavesdropping? Proceedings of the Royal Society London B 269, 19251929..CrossRefGoogle Scholar
Perkel, D.J. (2004) Origin of the anterior forebrain pathway. In Zeigler, H.P. and Marler, P. (eds) Behavioral Neurobiology of Birdsong. Annals of the New York Academy of Sciences 1016, 736748.Google Scholar
Pinault, D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews 46, 131.CrossRefGoogle ScholarPubMed
Pombal, M.A. and Puelles, L. (1999) Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers. Journal of Comparative Neurology 414, 391422.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Preuss, T.M. and Goldman-Rakic, P.S. (1987) Crossed corticothalamic and thalamocortical connections of macaque prefrontal cortex. Journal of Comparative Neurology 257, 269281.CrossRefGoogle ScholarPubMed
Pritz, M.B. (1995) The thalamus of reptiles and mammals: similarities and differences. Brain, Behavior and Evolution 46, 197208.CrossRefGoogle ScholarPubMed
Pritz, M.B. and Northcutt, R.G. (1980) Anatomical evidence for an ascending somatosensory pathway to the telencephalon in crocodiles, Caiman crocodilus. Experimental Brain Research 40, 342345.Google Scholar
Pritz, M.B. and Stritzel, M.E. (1988) Thalamic nuclei that project to reptilian telencephalon lack GABA and GAD immunoreactive neurons and puncta. Brain Research 457, 154159.CrossRefGoogle ScholarPubMed
Pritz, M.B. and Stritzel, M.E. (1990) A different type of vertebrate thalamic organization. Brain Research 525, 330334.CrossRefGoogle ScholarPubMed
Pritz, M.B. and Stritzel, M.E. (1994a) Glutamic acid decarboxylase immunoreactivity in some dorsal thalamic nuclei in Crocodilia. Neuroscience Letters 165, 109112.CrossRefGoogle ScholarPubMed
Pritz, M.B. and Stritzel, M.E. (1994b) Morphological and GAD immunocytochemical properties of the dorsal lateral geniculate nucleus in a reptile. Brain Research Bulletin 33, 723726.CrossRefGoogle Scholar
Puelles, L., Kuwana, E., Puelles, E., Bulfone, A., Shimamura, K., Keleher, J. et al. (2000) Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. Journal of Comparative Neurology 424, 409438.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Puzdrowski, R.L. and Northcutt, R.G. (1989) Central projections of the pineal complex in the silver lamprey Ichthyomyzon unicuspis. Cell Tissue Research 225, 269274.Google Scholar
Rattenborg, N.C. (2006) Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Research Bulletin 69, 2029.CrossRefGoogle ScholarPubMed
Reiner, A. (1993) Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex. Comparative Biochemistry and Physiology A 104, 735748.CrossRefGoogle ScholarPubMed
Reiner, A.J. (2000) A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. In Bock, G.R. and Cardew, G. (eds) Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Foundation Symposium 228. John Wiley & Sons, pp. 83102.CrossRefGoogle Scholar
Reiner, A., Medina, L. and Veenman, L.C. (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Research Reviews 28, 235285.CrossRefGoogle ScholarPubMed
Reiner, A., Perkel, D.J., Bruce, L.L., Butler, A.B., Csillag, A., Kuenzel, W. et al. (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. Journal of Comparative Neurology 473, 377414.CrossRefGoogle ScholarPubMed
Repérant, J., Miceli, D., Rio, J-P., Peyrichoux, J., Pierre, J. and Kirpitchnikova, E. (1986) The anatomical organization of retinal projections in the shark Scyliorhinus canicula with special reference to the evolution of the selachian primary visual system. Brain Research Reviews 11, 227248.CrossRefGoogle Scholar
Rieppel, O. (1999) Turtle origins. Science 283, 945946.CrossRefGoogle ScholarPubMed
Rink, E. and Wullimann, M.F. (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Research 1011, 206220.CrossRefGoogle ScholarPubMed
Rio, J-P., Repérant, J., Ward, R., Miceli, D. and Médina, M. (1992) Evidence of GABA-immunopositive neurons in the dorsal part of the lateral geniculate nucleus of reptiles: morphological correlates with interneurons. Neuroscience 47, 395407.CrossRefGoogle ScholarPubMed
Robertson, B., Auclair, F., Ménard, A., Grillner, S. and Dubuc, R. (2007) GABA distribution in lamprey is phylogenetically conserved. Journal of Comparative Neurology 503, 4763.CrossRefGoogle ScholarPubMed
Roth, G. and Grunwald, W. (2000) Morphology, axonal projection pattern, and responses to optic nerve stimulation of thalamic neurons in the salamander Plethodon jordani. Journal of Comparative Neurology 428, 543557.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Roth, G., Grunwald, W. and Dicke, U. (2003) Morphology, axonal projection pattern, and response to optic nerve stimulation of thalamic neurons in the fire-bellied toad Bombina orientalis. Journal of Comparative Neurology 461, 91110.CrossRefGoogle ScholarPubMed
Roth, G., Laberge, F., Mühlenbrock-Lenter, S. and Grunwald, W. (2007) Organization of the pallium in the fire-bellied toad Bombina orientalis. I: morphology and axonal projection pattern of neurons revealed by intracellular biocytin labeling. Journal of Comparative Neurology 501, 443464.CrossRefGoogle ScholarPubMed
Rose, J.E. (1942) The ontogenetic development of the rabbit's diencephalon. Journal of Comparative Neurology 77, 61129.CrossRefGoogle Scholar
Rubinson, K. (1968) Projections of the tectum opticum of the frog. Brain, Behavior and Evolution 1, 529561.CrossRefGoogle Scholar
Rupp, B. and Northcutt, R.G. (1998) The diencephalon and pretectum of the white sturgeon (Acipenser transmontanus): a cytoarchitectonic study. Brain, Behavior and Evolution 51, 239262.CrossRefGoogle ScholarPubMed
Scalia, F., Knapp, H., Halpern, M. and Riss, W. (1968) New observations on the retinal projections in the frog. Brain, Behavior and Evolution 1, 324353.CrossRefGoogle Scholar
Schweitzer, J. (1983) The physiological and anatomical localization of two electroreceptive diencephalic nuclei in the thornback ray, Platyrhinoidis triseriata. Journal of Comparative Physiology 153, 331341.CrossRefGoogle Scholar
Sherman, M.S. (2005) The role of the thalamus in cortical function: not just a simple relay. Thalamus & Related Systems 3, 205216.CrossRefGoogle Scholar
Sherman, M.S. and Guillery, R.W. (2001) Exploring the Thalamus and Its Role in Cortical function, 2nd Edition. MIT Press.Google Scholar
Sherman, M.S. and Guillery, R.W. (2004) The visual relays in the thalamus. In Chalupa, L.M. and Werner, J.S. (eds) The Visual Neuroscieces. MIT Press, pp. 565591.Google Scholar
Smeets, W.J.A.J. (1981a) Efferent tectal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Journal of Comparative Neurology 195, 1323.CrossRefGoogle ScholarPubMed
Smeets, W.J.A.J. (1981b) Retinofugal pathways in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. Journal of Comparative Neurology 195, 111.CrossRefGoogle ScholarPubMed
Smeets, W.J.A.J., Nieuwenhuys, R. and Roberts, B.L. (1983) The Central Nervous System of Cartilaginous Fishes: Structure and Functional Correlations. Springer-Verlag.CrossRefGoogle Scholar
Smeets, W.J.A.J. and Northcutt, R.G. (1987) At least one thalamotelencephalic pathway in cartilaginous fishes projects to the medial pallium. Neuroscience Letters 78, 277282.CrossRefGoogle Scholar
Striedter, G. (1990a) The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. Brain, Behavior and Evolution 36, 329354.CrossRefGoogle ScholarPubMed
Striedter, G. (1990b) The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar, and telencephalic connections. Brain, Behavior and Evolution 36, 355377.CrossRefGoogle ScholarPubMed
Striedter, G. (1991) Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. Journal of Comparative Neurology 312, 311331.CrossRefGoogle ScholarPubMed
Suárez, J., Andreu, M.J., Heredia, R., Davila, J.C. and Guirado, S. (2002) A putative striato-dorsal thalamic pathway in lizards. Brain Research Bulletin 57, 533535.CrossRefGoogle ScholarPubMed
Suárez, J., Dávila, J.C., Real, M.Á. and Guirado, S. (2005) Distribution of GABA, calbindin and nitric oxide synthase in the developing chick entopallium. Brain Research Bulletin 66, 441444.CrossRefGoogle ScholarPubMed
Suárez, J., Dávila, J.C., Real, M.Á., Guirado, S. and Medina, L. (2006) Calcium-binding proteins, neuronal nitric oxide synthase, and GABA help to distinguish different pallial areas in the developing and adult chicken. I. Hippocampal formation and hyperpallium. Journal of Comparative Neurology 497, 751771.CrossRefGoogle ScholarPubMed
Swanson, L.W. and Petrovich, G.D. (1998) What is the amygdala? Trends in Neurosciences 21, 323331..CrossRefGoogle ScholarPubMed
ten Donkelaar, H.J. and de Boer-van Huizen, R. (1981) Ascending projections of the brain stem reticular formation in a non-mammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain. Journal of Comparative Neurology 200, 501528.CrossRefGoogle Scholar
Trabucchi, M., Chartrel, N., Pelletier, G., Vallarino, M. and Vaudry, H. (2000) Distribution of GAD-immunoreactive neurons in the diencephalon of the African lungfish Protopterus annectens: colocalization of GAD and NPY in the preoptic area. Journal of Comparative Neurology 419, 223232.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Ulinski, P.S. (1986) Organization of corticogeniculate projections in the turtle, Pseudemys scripta. Journal of Comparative Neurology 254, 529542.CrossRefGoogle ScholarPubMed
Ulinski, P.S. and Nautiyal, J. (1988) Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys. Journal of Comparative Neurology 276, 92112.CrossRefGoogle ScholarPubMed
Watanabe, M. (1987) Synaptic organization of the nucleus dorsolateralis anterior thalami in the Japanese quail (Coturnix coturnix japonica). Brain Research 401, 279291.CrossRefGoogle ScholarPubMed
Westhoff, G., Roth, G. and Straka, H. (2004) Topographic representation of vestibular and somatosensory signals in the anuran thalamus. Neuroscience 124, 669683.CrossRefGoogle ScholarPubMed
Wicht, H. and Northcutt, R.G. (1992) The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain. Brain, Behavior and Evolution 40, 2564.CrossRefGoogle ScholarPubMed
Wild, J.M. (1997) The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Research 759, 122134.CrossRefGoogle Scholar
Wild, J.M. and Williams, M.N. (2000) Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. Journal of Comparative Neurology 416, 429450.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wullimann, M.F. (1998) The Central Nervous System. In Evans, D.H. (ed) The Physiology of Fishes, 2nd Edition.CRC Press, pp. 245282.Google Scholar
Wullimann, M.F. and Northcutt, R.G. (1990) Visual and electrosensory circuits of the diencephalon in mormyrids, an evolutionary perspective. Journal of Comparative Neurology 297, 537552.CrossRefGoogle ScholarPubMed
Veenman, C.L., Medina, L. and Reiner, A. (1997) Avian homologues of mammalian intralaminar, mediodorsal and midline thalamic nuclei: immunohistochemical and hodological evidence. Journal of Comparative Neurology 49, 7898.Google ScholarPubMed
Veenman, C.L. and Reiner, A. (1994) The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. Journal of Comparative Neurology 339, 209250.CrossRefGoogle Scholar
Vesselkin, N.P., Ermakova, T.V., Repérant, J., Kosareva, A.A. and Kenigfest, N.B. (1980) The retinofugal and retinopetal system in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Research 195, 453460.CrossRefGoogle ScholarPubMed
Yáñez, J., Anadón, R., Holmqvist, B.I. and Ekström, P. (1993) Neural projections of the pineal organ in the larval sea lamprey (Petromyzon marinus L.) revealed by indocarbocyanine dye tracing. Neuroscience Letters 164, 213216.CrossRefGoogle ScholarPubMed
Zardoya, R. and Meyer, A. (2001) The evolutionary of turtles revised. Naturwissenschaften 88, 193200.CrossRefGoogle ScholarPubMed