Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T11:56:36.388Z Has data issue: false hasContentIssue false

Young Binary Stars in Taurus-Auriga

Published online by Cambridge University Press:  13 May 2016

Russel J. White
Affiliation:
Department of Astronomy, University of Texas at Austin, R.L.M. Hall 15.308, Austin, TX 78731
Andrea M. Ghez
Affiliation:
UCLA Division of Astronomy and Astrophysics, Los Angeles, CA 90095

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the results of a high spatial resolution ultraviolet, optical and near-infrared survey of 44 young binary stars in Taurus-Auriga with separations of 10–1000 AU. The observations were carried out using the Hubble Space Telescope and NASA's IRTF. The binary star properties corroborate our previous work that suggests fragmentation is the dominant binary star formation mechanism. Of particular interest, we find that the components of binary systems are more coeval than randomly paired single T Tauri stars. Several important conclusions are drawn regarding the evolution of circumstellar material in binary systems. The mass accretion rates for primary stars are similar to single stars, which suggests that a companion as close as 10 AU has little effect on the mass accretion rate. These accretion rates, if constant, require replenishment of the inner circumstellar disks for at least the closest (≲ 100 AU) binary systems. On average, circumprimary disks appear to survive longer and accrete at a higher rate than circumsecondary disks do. This suggests that circumprimary disks are being preferentially replenished, possibly from a circumbinary reservoir with low angular momentum relative to the binary. The relative T Tauri types and the binary mass ratios tentatively suggest that systems with separations ≲ 200 AU share a common circumbinary reservoir. The higher mass accretion rates of primary stars relative to secondary stars is most likely due to their larger relative mass.

Type
VIII. Environments of Young Binaries - Indirect Observations
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Artymowicz, P., & Lubow, S.H. 1996, ApJ, 467, L77.CrossRefGoogle Scholar
Baraffe, I., et al. 1998, A&A, 337, 403.Google Scholar
Bate, M. R. 2000, MNRAS, 314, 33.CrossRefGoogle Scholar
Bate, M. R., & Bonnell, I. A. 1997, MNRAS, 285, 33.CrossRefGoogle Scholar
Bessell, M., & Brett, J. M. 1988, PASP, 100, 1134.Google Scholar
Bonnell, I., & Bastien, P. 1992, ApJ, 401, L31.Google Scholar
Boss, A. P. 1988, Comments Astrophys., 12, 169.Google Scholar
Brandner, W., & Zinnecker, H. 1997, A&A, 321, 220.Google Scholar
Duchêne, G., Monin, J.-L., Bouvier, J., & Ménard, F. 1999b, A&A, 351, 954.Google Scholar
Ghez, A. M., Neugebauer, G., & Matthews, K. 1993, A&A, 106, 2005.Google Scholar
Ghez, A. M., White, R. J., & Simon, M. 1997, ApJ, 490, 353.Google Scholar
Gullbring, E., Hartmann, L. W., Briceño, C., & Calvet, N. 1998, ApJ, 492, 323.Google Scholar
Hartigan, P., et al. 1991, ApJ, 382, 617.Google Scholar
Hartigan, P., Strom, K. M., & Strom, S. E. 1994, ApJ, 427, 961.CrossRefGoogle Scholar
Hartmann, L., Stauffer, J. R., Kenyon, S. J., & Jones, B. F. 1991, AJ, 101, 1050.Google Scholar
Herbig, G. H., & Bell, K. R. 1988, Lick Obs. Bull., 1111, 1.Google Scholar
Jensen, E. L. N., Mathieu, R.D., & Fuller, G.A. 1996, ApJ, 458, 312.CrossRefGoogle Scholar
Kenyon, S. J., & Hartmann, L. W. 1995, ApJS, 101, 117.Google Scholar
Koresko, C. D., Herbst, T. M., & Leinert, Ch. 1997, ApJ, 480, 741.CrossRefGoogle Scholar
Leinert, Ch., et al. 1993, A&A, 278, 129.Google Scholar
Luhman, K. 1999, ApJ, 525, 466.Google Scholar
Martín, E. L. 1998, AJ, 115, 351.CrossRefGoogle Scholar
Mathieu, R. D. 1994, ARA&A, 32, 465.Google Scholar
Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772.Google Scholar
Prato, L., & Simon, M. 1997, ApJ, 474, 455.Google Scholar
Simon, M., et al. 1995, ApJ, 443, 625.Google Scholar
White, R. J., & Ghez, A. M. 2000, in prep.Google Scholar
White, R. J. 2000, IAU Symposium 200: The Formation of Binary Stars.Google Scholar
White, R. J., et al. 1999, ApJ, 520, 811.Google Scholar
Woitas, J., Leinert, Ch., & Köhler, R. 2000, A&A, submitted.Google Scholar