Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T04:30:10.500Z Has data issue: false hasContentIssue false

X-ray Emission as an Indicator of Cosmic ray Acceleration in Supernova Remnants

Published online by Cambridge University Press:  25 May 2016

R. Petre
Affiliation:
Laboratory for High Energy Astrophysics, Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.
G. E. Allen
Affiliation:
NASA / Chandra X-Ray Center, Massachusetts Institute of Technology, Cambridge MA, 02139, U.S.A.
U. Hwang
Affiliation:
Goddard Space Flight Center and University of Maryland, Greenbelt, MD 20771, U.S.A.
J. W. Keohane
Affiliation:
NASA / North Carolina School of Science and Mathematics, Durham, NC 27705, U.S.A.
E. V. Gotthelf
Affiliation:
Astronomy Department, Columbia University, New York, NY 10027, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray observations over the past several years have led to the discovery of nonthermal X-ray emission arising in the shells of many young supernova remnants, including SN 1006, Cas A, and Tycho. This emission is thought to be synchrotron emission from electrons that have been shock accelerated to hundreds of TeV, and thus represents strong evidence that cosmic rays are accelerated in SNR shocks. The X-ray observations are corroborated by detection of TeV gamma rays from two of these remnants. A systematic investigation of young, shell-like remnants suggests that the nonthermal X-ray emission from shock-accelerated electrons is a common, if not ubiquitous, feature. We review the status of the X-ray observations and describe how they can be used to provide insight into the shock acceleration process.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Allen, G. E., et al. 1997, ApJ, 487, L97.Google Scholar
Aschenbach, B. 1998, Nature, 396, 141.Google Scholar
Asvarov, A. I., Dogiel, V. A., Gusienov, O. H., & Kasumov, F. K. 1990, A&A, 229, 196.Google Scholar
Decourchelle, A., & Petre, R. 1999, Astron. Nachr., 320, 203.Google Scholar
Esposito, J. A., Hunter, S. D., Kanbach, G., & Sreekumar, P. 1996, ApJ, 461, 820.Google Scholar
Iyudin, A. F., et al. 1998, Nature, 396, 142.Google Scholar
Jones, T. W., & Kang, H. 1993, ApJ, 402, 560.Google Scholar
Keohane, J. W., Petre, R., Gotthelf, E. V., Ozaki, M., & Koyama, K. 1997, ApJ, 484, 350.Google Scholar
Kothes, R., Furst, E., & Reich, W. 1998, A&A, 331, 661.Google Scholar
Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsuura, M., Ozaki, M., & Holt, S. S. 1995, Nature, 378, 255.Google Scholar
Koyama, K., et al. 1997, PASJ, 49, L7.Google Scholar
Laming, M. 1998, ApJ, 499, L309.Google Scholar
Muraishi, H., et al. 1999, astro-ph/9906077, preprint.Google Scholar
Petre, R., Hwang, U., Keohane, J. W., & Gotthelf, E. V. 1997, BAAS, 29, 1267.Google Scholar
Reynolds, S. P. 1996, ApJ, 459, L13.Google Scholar
Reynolds, S. P., & Keohane, J. W. 1999, ApJ, 525, 368.Google Scholar
Tanimori, T., et al. 1998, ApJ, 497, L25.Google Scholar
Tatischeff, V., Ramaty, R., & Kozlovsky, B. 1998, ApJ, 504, 874.Google Scholar
Safi-Harb, S., & Petre, R. 1999, ApJ, 512, 784.Google Scholar