Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:36:35.239Z Has data issue: false hasContentIssue false

X-Ray Constraints on Dark Matter in Galaxy Clusters and Elliptical Galaxies: A View from Chandra and XMM

Published online by Cambridge University Press:  26 May 2016

David A. Buote*
Affiliation:
University of California, Irvine, 4129 Frederick Reines Hall, Irvine, California, 92612-4575 U.S.A., [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray observations with Chandra and XMM are providing valuable new measurements of the dark matter content of elliptical galaxies and galaxy clusters. I review constraints on the radial density profiles and ellipticities of the dark matter in these systems (with an emphasis on clusters) obtained from recent X-ray observations and discuss their implications, especially for the self-interacting dark matter model.

Type
Part 5: Clusters and Ellipticals
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allen, S. W., Ettori, S., & Fabian, A. C. 2001, MNRAS, 324, 877.Google Scholar
Allen, S. W., Schmidt, R. W., & Fabian, A. C. 2002a, MNRAS, 335, 256.CrossRefGoogle Scholar
Allen, S. W., Schmidt, R. W., & Fabian, A. C. 2002b, MNRAS, 334, L11.CrossRefGoogle Scholar
Allen, S. W., et al. 2001, MNRAS, 324, 842.Google Scholar
Arabadjis, J. S., Bautz, M. W., & Garmire, G. P. 2002, ApJ, 572, 66.Google Scholar
Bullock, J. S. 2002, in The shapes of galaxies & their dark halos, ed. Natarajan, P. (Singapore: World Scientific), p. 109.Google Scholar
Buote, D. A., & Canizares, C. R. 1994, ApJ, 427, 86.Google Scholar
Buote, D. A., & Canizares, C. R. 1996, ApJ, 457, 177.Google Scholar
Buote, D. A., Jeltema, T. E., Canizares, C. R., & Garmire, G. P. 2002, ApJ, 577, 183.Google Scholar
Buote, D. A., & Lewis, A. D. 2003, ApJ, submitted.Google Scholar
Davé, R., Spergel, D. N., Steinhardt, P. J., & W&elt, B. D. 2001, ApJ, 547, 574.Google Scholar
David, L. P., Nulsen, P. E. J., McNamara, B. R., Forman, W., Jones, C., Ponman, T., Robertson, B., & Wise, M. 2001, ApJ, 557, 546.Google Scholar
Dubinski, J. 1998, ApJ, 502, 141.Google Scholar
Ettori, S., Fabian, A. C., Allen, S. W., & Johnstone, R. M. 2002, MNRAS, 331, 635.CrossRefGoogle Scholar
Ettori, S., & Lombardi, M. 2003, A&A, 398, L5.Google Scholar
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494.Google Scholar
Frenk, C. S., White, S. D. M., Davis, M., & Efstathiou, G. 1988, ApJ, 327, 507.CrossRefGoogle Scholar
Johnstone, R. M., Allen, S. W., Fabian, A. C., & Sanders, J. S. 2002, MNRAS, 336, 299.Google Scholar
Lewis, A. D., Buote, D. A., & Stocke, J. T. 2003, ApJ, 586, 135.Google Scholar
Lewis, A. D., Stocke, J. T., & Buote, D. A. 2002, ApJ, 573, L13.Google Scholar
Machacek, M. E., Bautz, M. W., Canizares, C., & Garmire, G. P. 2002, ApJ, 567, 188.Google Scholar
Mathews, W. G., & Brighenti, F. 2003, ARA&A, 41, 191.Google Scholar
Mathiesen, B., Evrard, A. E., & Mohr, J. J. 1999, ApJ, 520, L21.Google Scholar
Moore, B., Quinn, T., Governato, F., Stadel, J., & Lake, G. 1999, MNRAS, 310, 1147.Google Scholar
Peterson, J. R., et al. 2001, A&A, 365, L104.Google Scholar
Pfenniger, D., Combes, F., & Martinet, L. 1994, A&A, 285, 79.Google Scholar
Pratt, G. W., & Arnaud, M. 2002, A&A, 394, 375.Google Scholar
Pratt, G. W., & Arnaud, M. 2003, A&A, 408, 1.Google Scholar
Romanowsky, A. J., & Kochanek, C. S. 1998, ApJ, 493, 641.Google Scholar
Schmidt, R. W., Allen, S. W., & Fabian, A. C. 2001, MNRAS, 327, 1057.Google Scholar
Spergel, D. N., & Steinhardt, P. J. 2000, Physical Review Letters, 84, 3760.Google Scholar
Statler, T. S., & McNamara, B. R. 2002, ApJ, 581, 1032.Google Scholar
Tamura, T., et al. 2001, A&A, 365, L87.Google Scholar
Tsai, J. C., Katz, N., & Bertschinger, E. 1994, ApJ, 423, 553.Google Scholar
Xue, S., & Wu, X. 2002, ApJ, 576, 152.Google Scholar