Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T01:28:40.795Z Has data issue: false hasContentIssue false

Very-Long-Baseline Interferometry Applied to Geophysics

Published online by Cambridge University Press:  07 August 2017

W. E. Carter
Affiliation:
Geosciences Laboratory Office of Ocean and Earth Science National Oceanic and Atmospheric Administration Rockville, MD
D. S. Robertson
Affiliation:
Geosciences Laboratory Office of Ocean and Earth Science National Oceanic and Atmospheric Administration Rockville, MD

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Very-long-baseline Interferometry (VLBI) has opened for study a broad new spectrum of geophysical phenomena including: direct observation of the tectonic motions and deformations of the Earth's crustal plates, observations of unprecedented detail of the variations in the rotation of the Earth, and direct measurement of the elastic deformations of the Earth in response to tidal forces. These new measurements have placed significant constraints on models of the interior structure of the Earth; for example, measurements of the variations in the Earth's nutation have been shown to be particularly sensitive to the shape of the core-mantle boundary. The VLBI measurements will allow us to construct a global reference frame accurate at the centimeter level. Such a frame will be essential to studying long-term global changes, especially those changes related to sea-level variations as recorded by tide gauge measurements.

Type
Very Long Baseline Interferometry (VLBI)
Copyright
Copyright © Kluwer 

References

Argus, D.F., and Gordon, R.G., 1990, Pacific-North American Plate Motion from Very Long Baseline Interferometry Compared with Motion Inferred from Magnetic Anomalies, Transform Faults, and Earthquake Slip Vectors, J. Geophys. Res. , 95, 1731517324.Google Scholar
Barnes, R.T.H., Hide, R., White, A.A., and Wilson, C.A., 1983, Atmospheric Angular Momentum Fluctuations, Length-of-Day Changes and Polar Motion, Proc. Roy. Soc. Lond. , A387, 3173.Google Scholar
Brosche, P., Seiler, U., Sünderman, J., and Wünsch, J., 1989, Periodic Changes in Earth's Rotation Due to Oceanic Tides, Astron. Astrophys. , 220, 318320.Google Scholar
Carter, W.E., Robertson, D.S., Pettey, J.E., Tapley, B.D., Schutz, B.E., Eanes, R.J., and Lufeng, Miao, 1984, Variations in the Rotation of the Earth, Science , 224, 957961.Google Scholar
Carter, W.E., Robertson, D.S., and MacKay, J.R., 1985, Geodetic Radio Interferometric Surveying: Applications and Results, J. Geophys. Res. , 90, 45774587.Google Scholar
Chao, B.F., 1989, Length-of-Day Variations Caused by El Niño-Southern Oscillation and Quasi-Biennial Oscillation, Science , 243, 923925.Google Scholar
Chao, B.F., and Gross, R.S, 1987, Changes in Earth's Rotation and Gravity by Earthquakes, Geophys. J. R. Astron. Soc. , 91, 569596.Google Scholar
Chao, B.F., and O'Connor, W.P., 1988, Global Surface-water Induced Seasonal Variations in the Earth's Rotation and Gravitational Field, Geophys. J. R. Astron. Soc. , 89, 263270.Google Scholar
Chao, B.F., O'Connor, W.P., Chang, A.T.C., Hall, D.K., and Foster, J.L., 1987, Snow-load Effect on the Earth's Rotation and Gravitational Field, J. Geophys. Res. , 92, 94159422.Google Scholar
Chao, B.F., O'Connor, W.P., and Chang, A.T.C., 1988, Snow-load Excitation of the Earth's Annual Wobble, in The Earth's Rotation and Reference Frames for Geodesy and Geodynamics , A.K. Babcock and G.A. Wilkins, (eds.), Kluwer, Dordrecht, Holland, 373380.Google Scholar
Clark, T.A., Gordon, D., Himwich, W.E., Ma, C., Mallama, A., and Ryan, J.W., 1987, Determination of Relative Site Motions in the Western United States Using Mark III Very Long Baseline Interferometry, J. Geophys. Res. , 92, 1274112750.Google Scholar
Clark, T.A., Ma, C., Sauber, J.M., Ryan, J.W., Gordon, D., Shaffer, D.B., Caprette, D.S., and Vandenberg, N.R., 1990, Geodetic Measurements of Deformation in the Loma Prieta, California Earthquake with Very Long Baseline Interferometry, Geophys. Res. Lett. , 17, 12151218.Google Scholar
Currie, R.G., 1974, Period and Qw of the Chandler Wobble, Geophys. J. R. Astron. Soc. , 38, 179185.Google Scholar
Currie, R.G., 1975, Period, Qp, and Amplitude of the Pole tide, Geophys. J. R. Astron. Soc. , 43, 7386.CrossRefGoogle Scholar
Davidson, J., and Trask, D., 1985, Utilization of Mobile VLBI for Geodetic Measurements, IEEE Transactions on Geoscience and Remote Sensing , GE-23, 438449.Google Scholar
DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990, Current Plate Motions, Geophys. J. Int. , 101, 425478.Google Scholar
de Vries, D., and Wahr, J.M., 1991, A Solid Inner Core Nutational Normal Mode and Its Effects on the Earth's Forced Nutations and Diurnal Body Tides, J. Geophys. Res. , 96, B5, 82758293.CrossRefGoogle Scholar
Dong, D., and Herring, T.A., 1990, Observed Variations of UT1 and Polar Motion in Diurnal and Semidiurnal Bands, EOS, Trans. Am. Geophys. Un. , 71, no. 17, 482483.Google Scholar
Gordon, D., 1988, Geodesy by Radio Interferometry: Determination of Vector Motions for Sites in the Western United States, in The Impact of VLBI on Astrophysics and Geophysics , Reid, M.J. and Moran, J.M., (eds.), Kluwer, Dordrecht, Holland, 351352.CrossRefGoogle Scholar
Gwinn, C.R., Herring, T.A., and Shapiro, I.I., 1986, Geodesy by Radio Interferometry: Studies of the Forced Nutations of the Earth, Part II: Interpretation, J. Geophys Res , 91, 47554765.CrossRefGoogle Scholar
Hager, B.H., Clayton, R.W., Richards, MA., Comer, R.P., and Dziewonski, A.M., 1985, Lower Mantle Heterogeneity, Dynamic Topography, and the Geoid, Nature , 313, 541545.CrossRefGoogle Scholar
Herring, T.A., 1986a, Very Long Baseline Interferometry, in Space Geodesy and Geodynamics , Anderson, A.J., (ed.), Academic Press, London, 169196.Google Scholar
Herring, T.A., 1986b, Precision of Vertical Position Estimates from Very Long Baseline Interferometry, J. Geophys. Res. , 91, 91779182.CrossRefGoogle Scholar
Herring, T.A., Corey, B.E., Counselman, C. C. III, Shapiro, I.I., Rogers, A.E.E., Whitney, A.R., Clark, T.A, Knight, C.A., Ma, C., Ryan, J.W., Schupler, B.R., Vandenberg, N.R., Ronnang, B.O., Lundquist, G., Elgered, G., Campbell, J.A., and Richards, P., 1983, Determination of Tidal Parameters from VLBI Observations, in Proceedings of the Ninth International Symposium of Earth Tides , Kuo, J. (ed.)., E. Schweizerhart'sche Verlagsbuchhandlung, Stuttgart, 205214.Google Scholar
Herring, T.A., Gwinn, C.R., and Shapiro, I.I., 1986a, Geodesy by Radio Interferometry: Studies of the Forced Nutations of the Earth, Part I: Data Analysis, J. Geophys Res , 91, 47454755.Google Scholar
Herring, T.A., Shapiro, I.I., Clark, T.A., Ma, C., Ryan, J.W., Schupler, B.R., Knight, C.A., Lundqvist, G., Shaffer, D.B., Vandenberg, N.R., Corey, B.E., Hinteregger, H.F., Rogers, A.E.E., Webber, J.C., Whitney, A.R., Elgered, G., Ronnang, B.O., and Davis, J.L., 1986b, Geodesy by Radio Interferometry: Evidence for Contemporary Plate Motion, J. Geophys. Res. , 91, 83418347.Google Scholar
Herring, T.A., Matthews, P.M., Buffet, B.A., and Shapiro, I.I., 1991, Forced Nutations of the Earth: Influence of Inner Core Dynamics III. Very-Long-Baseline Interferometry Data Analysis, J. Geophys. Res. , 96, B5, 82598273.Google Scholar
Hide, R., 1984, Rotation of the Atmospheres of the Earth and Planets, Phil. Trans. R. Soc. Lond. , A 313, 107121.Google Scholar
Hinnov, L.A., and Wilson, C.R., 1987, An Estimate of the Water Storage Contribution to the Excitation of Polar Motion, Geophys. J. R. Astron. Soc. , 88, 437459.Google Scholar
Jeffreys, H., 1958, A Modification of Lomnitz's Law of Creep in Rocks, Geophys J. R. Astr. Soc. , 1, 9295.Google Scholar
Lambeck, K., 1980, The Earth's Variable Rotation: Geophysical Causes and Consequences , Cambridge University Press, London.Google Scholar
Lambeck, K., 1988, The Earth's Variable Rotation: Some Geophysical Causes, in The Earth's Rotation and Reference Frames for Geodesy and Geodynamics , Babcock, A.K. and Wilkins, G.A., (eds.), Kluwer, Dordrecht, Holland, 120.Google Scholar
Langley, R.B., King, R.W., Shapiro, I.I., Rosen, R.D., and Salstein, D.A., 1981, Atmospheric Angular Momentum and the Length of the Day: a Common Fluctuation with a Period Near 50 Days, Nature , 294, 730733.CrossRefGoogle Scholar
Lyzenga, G.A. and Golombek, M.P., 1986, North American-Pacific Relative Plate Motion in Southern California from VLBI Measurements, Science , 233, 11811182.Google Scholar
Lyzenga, G.A., Wallace, K.S., Fanselow, J.L., Raefsky, A., and Grouth, P.M., 1986, Tectonic Motions in California Inferred from VLBI Observations, 1980–1984, J. Geophys. Res. , 91, B9, 94739487.CrossRefGoogle Scholar
Ma, C., Sauber, J.M., Bell, L.J., Clark, T.A., Gordon, D., Himwich, W.E., and Ryan, J.R., 1990, Measurement of Horizontal Motions in Alaska Using Very Long Baseline Interferometry, J. Geophys. Res. , 95, B13, 2199122011.Google Scholar
MacDoran, P.F., 1979, High Mobility Radio Interferometric Geodetic Monitoring of Crustal Movements, Tectonophys. , 52, 47.Google Scholar
Mansinha, L., and Smylie, D.E., 1967, Effect of Earthquakes on the Chandler Wobble and the Secular Pole Shift, J. Geophys. Res. , 72, 4731.Google Scholar
Mansinha, L., and Smylie, D.E., 1968, Earthquakes and the Earth's Wobble, Science , 161, 1127.Google Scholar
Matthews, P.M., Buffet, B.A., Herring, T.A., and Shapiro, I.I., 1991a, Forced Nutations of the Earth: Influence of Inner Core Dynamics 1. Theory, J. Geophys. Res. , 96, B5, 82198242.Google Scholar
Matthews, P.M., Buffet, B.A., Herring, T.A., and Shapiro, I.I., 1991b, Forced Nutations of the Earth: Influence of Inner Core Dynamics 2. Numerical Results and Comparisons, J. Geophys. Res. , 96, B5, 82438257.CrossRefGoogle Scholar
Minster, J.B., and Jordan, T.H., 1978, Present-day Plate Motions, J. Geophys. Res. , 83, 53315354.Google Scholar
Munk, W.H., and MacDonald, G.J.F., 1960, The Rotation of the Earth , Cambridge University Press.Google Scholar
Munk, W.H., and Hassan, E.S.M., 1961, Atmospheric Excitation of the Earth's Wobble, Geophys. J. R. Astron. Soc. , 4, 339.CrossRefGoogle Scholar
Ooe, M., 1978, An Optimal Complex ARMA Model of the Chandler Wobble, Geophys. J. R. Astron. Soc. , 53, 445457.Google Scholar
Press, F., 1965, Displacements, Strains and Tilts at Teleseismic Distances, J. Geophys. Res. , 70, 2395.Google Scholar
Robertson, D.S., 1975, Geodetic and Astrometric Measurements with Very Long Baseline Interferometry, Ph.D. dissertation, M.I.T., 1975. Also available as NASA GSFC X-document No. X-922-77-228 and NOAA reprint, National Geodetic Information Center, Rockville, MD.Google Scholar
Robertson, D.S., Carter, W.E., Tapley, B.D., Schutz, B.E., Eanes, R.J., 1985a, Polar Motion Measurements: Sub-Decimeter Accuracy Verified by Intercomparison, Science , 229, 12591261.Google Scholar
Robertson, D.S., Carter, W.E., Campbell, J., and Schuh, H., 1985b, Daily UT1 Determinations from IRIS Very Long Baseline Interferometry, Nature , 316, 424427.Google Scholar
Robertson, D.S., Carter, W.E., and Fallon, F.W., 1988, Earth Orientation from the IRIS project, in The Impact of VLBI on Astrophysics and Geophysics , Reid, M. J. and Moran, J. M., (eds.), Kluwer, Dordrecht, Holland, 391400.CrossRefGoogle Scholar
Rochester, M.G., Jensen, O.G., and Smylie, D.E., 1974, A Search for the Earth's “Nearly Diurnal Free Wobble,” Geophys. J. R. Astron. Soc. , 38, 349363.Google Scholar
Rosen, R.D., and Salstein, D.A., 1983, Variations in Atmospheric Angular Momentum on Global and Regional Scales and the Length of Day, J. Geophys. Res. , 88, 54515470.Google Scholar
Rosen, R.D., Salstein, D.A., Eubanks, T.M., Dickey, J.O., and Steppe, J.A., 1984, An El Niño Signal in Atmospheric Angular Momentum and Earth Rotation, Science , 225, 411414.CrossRefGoogle ScholarPubMed
Rosen, R.D., Salstein, D.A., and Wood, T.M., 1990, Discrepancies in the Earth-Atmosphere Angular Momentum Budget, J. Geophys. Res. , 95, 265279.CrossRefGoogle Scholar
Ryan, J.W., Clark, T.A., Coates, R.J., Ma, C., Wildes, W.T., Herring, T.A., Shapiro, I.I., Corey, B.E., Counselman, C.C., Hinteregger, H.F., Rogers, A.E.E., Whitney, A.R., Knight, C.A., Vandenberg, N.R., Pigg, J.C., Schupler, B.R., and Ronnang, B.O., 1986, Geodesy by Radio Interferometry: Determinations of Baseline Vector, Earth Rotation and Solid Earth Tide Parameters with the Mark I Very Long Baseline Radio Interferometry System, J. Geophys. Res. , 91, 19351946.Google Scholar
Ryan, J.W., and Clark, T.A., 1988, NASA Crustal Dynamics Project Results: Tectonic plate motion measurements with Mark-Ill VLBI, in The Impact of VLBI on Astrophysics and Geophysics , Reid, M. J. and Moran, J. M., (eds.), Kluwer, Dordrecht, Holland, 339340.Google Scholar
Sauber, J., Jordan, T.H., Beroza, G.C., Clark, T.A., and Lisowski, M., 1988, Constraints on North American-Pacific Plate Boundary Deformation in Central California from VLBI and Ground-based Geodetic Data, in The Impact of VLBI on Astrophysics and Geophysics , Reid, M.J. and Moran, J.M., (eds.), Kluwer, Dordrecht, Holland, 353.Google Scholar
Shapiro, I.I., 1967, New Method for the Detection of Light Deflection by Solar Gravity, Science , 157, 806808.Google Scholar
Shapiro, I.I., and Knight, C.A., 1970, Geophysical Applications of Long-Baseline Radio Interferometry, in Earthquake Displacement Fields and the Rotation of the Earth , Mansinha, L., Smylie, D. E., and Beck, A. E., (eds.), 285301, D. Reidel, Dordrecht, Holland.Google Scholar
Smith, M.L., and Dahlen, F.A., 1981, The Period and Q of the Chandler Wobble, Geophys. J. R. Astron. Soc. , 64, 223282.Google Scholar
Stacey, F.D., 1977, Physics of the Earth , Wiley, New York.Google Scholar
Toomre, A., 1974, On the ‘Nearly Diurnal Wobble’ of the Earth, Geophys. J. R. Astron. Soc. , 38, 335348.Google Scholar
Wahr, J.M., 1981, The Forced Nutations of an Elliptical, Rotating, Elastic and Oceanless Earth, Geophys. J. R. Astron. Soc. , 64, 705728.Google Scholar
Wahr, J.M., 1982, The Effects of the Atmosphere and Oceans on the Earth's Wobble — I. Theory, Geophys. J. R. Astron. Soc. , 70, 349372.Google Scholar
Wahr, J.M., 1983, The Effects of the Atmosphere and Oceans on the Earth's Wobble and on the Seasonal Variations in the Length of Day — II. Results, Geophys. J. R. Astron. Soc. , 74, 451487.Google Scholar
Wahr, J.M., 1986, Geophysical Aspects of Polar Motion, Variations in the Length of Day, and the Luni-Solar Nutations in Space Geodesy and Geodynamics , Anderson, A.J., (ed.), Academic Press, London, 281313.Google Scholar
Wahr, J.M., 1988, The Theory of the Earth's Orientation, with Some New Results for Nutation, in The impact of VLBI on Astrophysics and Geophysics, proceedings of IAU Symposium No. 129 , Reid, M. J. and Moran, J. M., (eds.), 381390, Kluwer Academic Publishers, Dordrecht, Holland.Google Scholar
Wahr, J.M., and Bergen, Z., 1986, The Effects of Mantle Anelasticity on Nutation, Earth Tides and Tidal Variations in the Rotation Rate, Geophys. J. R. Astron. Soc. , 86, 633668.Google Scholar
Wilson, C.A., and Haubrich, R.A., 1976, Meteorological Excitation of the Earth's Wobble, Geophys. J. R. Astron. Soc. , 46, 707743.Google Scholar
Wilson, C.A., and Hinnov, L., 1985, Water Storage Effects on the Earth's Rotation, in Proc. Int. Conf. Earth Rotation and the Terrestrial Reference Frame , Dept. Geod. Science, Ohio State University, Columbus, Ohio, 415433.Google Scholar
Yoder, C.F., Williams, J.G., and Parke, M.E., 1983, Tidal Variations of Earth Rotation, J. Geophys. Res. , 86, 881891.CrossRefGoogle Scholar