Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T04:41:03.297Z Has data issue: false hasContentIssue false

Verifying the Use of Supernovae as Probes of the Cosmic Expansion

Published online by Cambridge University Press:  26 May 2016

Richard Ellis
Affiliation:
1105-24 Astronomy, Caltech, Pasadena, CA 91125, USA 2Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
Mark Sullivan
Affiliation:
1105-24 Astronomy, Caltech, Pasadena, CA 91125, USA 2Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present preliminary results of a follow-up survey which aims to characterise in detail those galaxies which hosted Type Ia supernovae found by the Supernova Cosmology Project. Our survey has two components: Hubble Space Telescope imaging with STIS and Keck spectroscopy with ESI, the goal being to classify each host galaxy into one of three broad morphological/spectral classes and hence to investigate the dependence of supernovae properties on host galaxy type over a large range in redshift. Of particular interest is the supernova Hubble diagram characterised by host galaxy class which suggests that most of the scatter arises from those occurring in late-type irregulars. Supernovae hosted by (presumed dust-free) E/SO galaxies closely follow the adopted SCP cosmological model. Although larger datasets are required, we cannot yet find any significant difference in the light curves of distant supernovae hosted in different galaxy types.

Type
Part VII: Evidence for non-zero A
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Aguirre, A., 1999, ApJ, 525, 583.CrossRefGoogle Scholar
Branch, D., Romanishin, W. & Baron, E., 1996, ApJ, 465, 73.Google Scholar
de Bernardis, P., 2000, Nature, 404, 955.Google Scholar
Fruchter, A. S., Hook, R. N., Busko, I. C. & Mutchler, M., 1997 in ‘The 1997 HST Calibration workshop with a new generation of instruments’, ed. Casertano, S., Jedrzejewski, R., Keyes, T. & Stevens, M., 518.Google Scholar
Fruchter, A. S., Hook, R. N., 1999, PASP, submitted (astro-ph/9808087).Google Scholar
Hamuy, M., Phillips, M., Suntzeff, N., Schommer, R., Maza, J. & Avilés, R., 1996a, AJ, 112, 2391.Google Scholar
Hamuy, M., Phillips, M., Suntzeff, N., Schommer, R., Maza, J. & Avilés, R., 1996b, AJ, 112, 2398.CrossRefGoogle Scholar
Hamuy, M. et al., 2000, AJ, 120, 1479.Google Scholar
Heyl, J. et al., 1997, MNRAS, 285, 613.Google Scholar
Höflich, P., Nomoto, K., Umeda, H. & Wheeler, J., ApJ, 528, 590.Google Scholar
Jaffe, A. et al., 2000, Phys.Rev.Lett submitted, astro-ph/0007333.Google Scholar
Perlmutter, S., 1997, ApJ, 483, 565.Google Scholar
Perlmutter, S., 1999, ApJ, 517, 565 (P99).Google Scholar
Phillips, M., 1993, ApJ, 413, L105.Google Scholar
Poggianti, B., 1997, A&AS, 122, 399.Google Scholar
Riess, A. et al., 1996, ApJ, 473, 88.Google Scholar
Riess, A. et al., 1998, AJ, 116, 1009.Google Scholar
Riess, A. et al., 1999, AJ, 117, 107.Google Scholar
Totani, T. & Kobayashi, C., ApJ, 525, L65.Google Scholar