Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T16:23:04.417Z Has data issue: false hasContentIssue false

Use of meteorological measurements for computing refractional effects - a review

Published online by Cambridge University Press:  14 August 2015

P.V. Angus-Leppan*
Affiliation:
University of New South Wales, Sydney, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Corrections which are dependent on the atmosphere include the first and second velocity corrections and the curvature correction in EDM, and the refraction correction for trigonometric heighting. Generalised correction formulae have been developed to make use of variable values of the refractivity N and the coefficient of refraction k. There are no universally applicable values of these parameters, so atmospheric models of the temperature gradient and, for microwaves, the humidity gradient, are needed to represent the very significant variations. The models should take into account variations due to meteorological factors, surface conditions and the height above the surface. Many models for the vertical gradients have been produced. That of Brocks (1948) is very important and has been widely used and developed by researchers. More recently Monin and Obukhov, basing their work on the physics of the lower atmosphere and dimensional analysis, have included equations for the vertical gradients in their turbulence theory. The Turbulent Transfer Model, which embodies later results in this theory, is currently being refined and developed for geodetic applications.

Type
Review Article
Copyright
Copyright © Reidel 1979 

References

10. Bibliography

Adlung, A. (1963): Über die Ausbreitung von Zentimeter- und Dezimeter-wellen in der bodennahen Luftschicht. Abh. d. Meteorol. u. Hydrol. Dienstes der DDR, Nr. 79 Bd. IX, Akademie-Verlag, Berlin.Google Scholar
Angus-Leppan, P.V. (1961): A Study of Refraction in the Lower Atmosphere. Empire Survey Review. No. 120, pp 6269; No. 121, pp 107–119; No 122, pp 166–177.Google Scholar
Angus-Leppan, P.V. (1967): A Mathematical Model for Temperatures in the Lower Atmosphere, and its Application in Refraction Calculations. Österreichische Zeitschrift für Vermessungswesen, Sonderheft 25, pp 219227 + suppl.Google Scholar
Angus-Leppan, P.V. (1971): Meteorological Physics applied to the Calculation of Refraction Corrections. Proceeding of conference of Commonwealth Survey Officiers, Cambridge, Paper No. B5, 9 pp.Google Scholar
Angus-Leppan, P.V. and Webb, E.K. (1971): Turbulent Heat Transfer and Atmospheric Refraction. General Assembly IUGG Travaux. IAG Sec. I., 15 pp.Google Scholar
Barrell, H. and Sears, T.E. (1939): The Refraction Dispersion of Air for the Visible Spectrum. Phil. Trans. Roy. Society, Series A, London, p. 238.Google Scholar
Best, A.C. (1935): Transfer of Heat and Momentum in the lowest Layers of the Atmosphere. Met. Office Geophys. Mem. No. 65, HMSO London.Google Scholar
Best, A.C., Knighting, E., Pedlow, R.H. and Stormonth, K. (1952): Temperature and Humidity Gradient in the first 100 m over South-East England. Met. Off. Geophys. Mem. No. 89, HMSO London. (Reprinted 1962).Google Scholar
Bretterbauer, K. (1966): Die Ausbreitung von Mikrowellen in einem Atmosphärischen Modell. Allgemeine Vermessungs-Nachrichten, 8, pp 313318.Google Scholar
BROCKS, K. (1948): Über den täglichen und jährlichen Gang der Höhenabhängigkeit der Temperatur in den unteren 300 Metern der Atmosphäre und ihrem Zusammenhang mit der Konvection. Berichte d. Deutschen Wetterdienstes in der U.S.-Zone, Nr. 5, Bad Kissingen.Google Scholar
Brunner, F.K. (1974): Trigonometrisches Nivellement - Geometrisches Nivellement. Österreichische Zeitschrift für Vermessungswesen, 62, pp. 4960.Google Scholar
Brunner, F.K. (1977): Experimental Determination of the Coefficients of Refraction from Heat Flux Measurements. Proc. Int. Symp. on EDM and Atm. Refr., Wageningen, pp 245255.Google Scholar
Brunner, F.K. (1977A): On the Refraction Coefficient of Microwaves. Bulletin Geodesique, 51, pp 257264.Google Scholar
Brunner, F.K. and Angus-Leppan, P.V. (1976): On the Significance of Meteorological Parameters for Terrestrial Refraction. Unisurv G, 25, pp 95108, University of New South Wales, Sydney.Google Scholar
Brunner, F.K. and Fraser, C.S. (1977): An Atmospheric Turbulent Turbulent Transfer Model for EDM Reduction. Proc. Int. Symp. on EDM and Atm. Refrn., Wageningen, pp 304315.Google Scholar
Brunner, F.K. and Fraser, C.S. (1977A): Application of the Atmospheric Turbulent Transfer Model for the Reduction of EDM. Unisurv G, 27, pp 121. University of New South Wales, Sydney.Google Scholar
De Graaff-Hunter, J. (1913): Survey India Professional Paper. Dehra Dun.Google Scholar
Diechl, K. and Reinhart, E. (1969): Zur Bestimmung des Brechungsindexes bei der elektrooptischen Entfernungsmessung. Allgemeine Vermessungs-nachrichten, 7, pp 269281.Google Scholar
Essen, L. and Froome, K.D. (1951): The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24000 mc/s. Proc. Phys. Soc., (London), B-64, pp 862875.Google Scholar
Felletschin, V. (1978): Analyse und Steigerung der Genauigkeit bei elektronischen Entfernungsmessungen mit Licht- und Mikrowellen im Testnetz Karlsruhe. Deutsche Geodätische Kommission, C-246, München.Google Scholar
Flower, W.D. (1937): An Investigation into the variation of the Lapse Rate of Temperature in the Atmosphere near the ground at Ismailia, Egypt. Met. Office Geophys. Mem., No. 71, HMSO London.Google Scholar
Jones, H.E. (1971): Systematic Errors in Tellurometer and Geodimeter measurements. Canadian Surveyer, 25, pp 406423.Google Scholar
Kukkamäki, T.J. (1938): Über die nivellitische Refraktion. Publication of the Finnish Geodetic Institute, 25, Helsinki.Google Scholar
Kuntz, E. (1970): Messung von Zenitdistanzen in der elektrooptischen Entfernungsmessung. Allgemeine Vermessungs-Nachrichten, 77, pp 4156.Google Scholar
Kuntz, E. and MÖLLER, D. (1971): Gleichzeitige elektronische Entfernungsmessung mit Licht und Mikrowellen. Allgemeine Vermessungs-Nachrichten, 78, pp 254266.Google Scholar
Lang, H. (1969): Über den Einfluß der bodennahen Luftschicht auf die Mikrowellen-Entfernungsmessung. Arbeiten aus dem Verm. u. Kartenwesen der DDR, 19, Leipzig.Google Scholar
Levallois, J.J. and Masson-D'Autume, G. (1953): “Etude sur le Refraction Géodésique et le Nivellement Barométrique.” Institut Géographique National, Paris.Google Scholar
Meade, B.K. (1969): Corrections for Refractive Index as applied to Electro-Optical Distance Measurements. IAG Symposium on Electromagnetic Distance Measurement and Atmospheric Refraction, Boulder, Colorado.Google Scholar
Maier, U. (1977): Genauigkeitsuntersuchungen zur elektrooptischen Messung langer Strecken. , .Google Scholar
Mitter, J. (1962): Über die Bestimmbarkeit der Ausbreitungsgeschwindigkeit der Trägerwellen bei elektrischen Entfernungsmessungen. Allgemeine Vermessungs-Nachrichten, 5, pp 139159.Google Scholar
Moritz, H. (1967): Application of the Conformal Theory of Refraction. Österreichische Zeitschrift für Vermessungswesen, Sonderband 25, pp 323–334. (IAG Symposium on ‘Recent research on atmospherical refraction for geodetical purposes’).Google Scholar
Parm, T. (1967): Investigations on Refractional Corrections in Tellurometer measurements. Österreichische Zeitschrift für Vermessungswesen, Sonderband 25.Google Scholar
Prescott, W.H. and SAVAGE, T.C. (1974): Precision of Geodolite Distance Measurements. IAG Symposium on Terrestrial EDM and Atmospheric Effects on Angular Measurements, Stockholm.Google Scholar
Rinner, K. (1961): Über Schranken für die geodätische Anwendung der elektronischen Entfernungsmessung. Deutsche Geodätische Kommission, B-95, München.Google Scholar
Rueger, T.M. (1978): Introduction to Electronic Distance Measurements. Monograph No. 7, School of Surveying, University of New South Wales, Sydney.Google Scholar
Saastamoinen, T. (1962): The effect of Path Curvature of light waves on the Refractive Index: application to Electronic Distance Measurement. Canadian Surveyor XVI, 2.Google Scholar
Schädlich, M. (1975): Die topographisch-atmosphärische Reduktion des mittleren Brechungsindex. Vermessungs-Technik, 2/75, pp 6871.Google Scholar
Webb, E.K. (1969): The Temperature Structure of the Lower Atmosphere. Proc. of REF-EDM Conference, University of New South Wales, Sydney, pp 19.Google Scholar