Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T03:08:16.796Z Has data issue: false hasContentIssue false

Tidal Circularization Among the Close Binaries in the Halo

Published online by Cambridge University Press:  07 August 2017

Guillermo Torres
Affiliation:
Harvard-Smithsonian Center for Astrophysics and Córdoba Observatory, National University of Córdoba Laprida 854, 5000 Córdoba, Argentina
David W. Latham
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, Massachusetts 02138, U.S.A.
Tsevi Mazeh
Affiliation:
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Science Tel Aviv University, Tel Aviv 69978, Israel
Bruce W. Carney
Affiliation:
Department of Physics and Astronomy, University of North Carolina Chapel Hill, North Carolina 27599–3255, U.S.A.
Robert P. Stefanik
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, Massachusetts 02138, U.S.A.
Robert J. Davis
Affiliation:
Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, Massachusetts 02138, U.S.A.
John B. Laird
Affiliation:
Department of Physics and Astronomy, Bowling Green State University Bowling Green, Ohio 43403, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a sample of halo binaries, we find that the transition between circular and eccentric orbits occurs at a period of at least 18.7 days. This is consistent with the Goldman & Mazeh theory of tidal circularization on the main sequence.

Type
Oral and Contributed Papers
Copyright
Copyright © Kluwer 1992 

References

Batten, A. H., Fletcher, J. M., & Mann, P. J. 1978, Publ. Dom. Astrophys. Obs., 15, 121 Google Scholar
Burki, G., & Mayor, M. 1986, in IAU Symp. No. 118, Instrumentation and Research Programmes for Small Telescopes, eds. Hearnshaw, J. B. & Cottrell, P. L. (Dordrecht: Reidel), p. 385 CrossRefGoogle Scholar
Campbell, W. W. 1910, Lick Obs. Bull., 6, 17 Google Scholar
Carney, B. W., & Latham, D. W. 1987, AJ, 92, 116 Google Scholar
Carney, B. W., Laird, J. B., Latham, D. W., & Kurucz, R. L. 1987, AJ, 94, 1066 CrossRefGoogle Scholar
Carney, B. W., Latham, D. W., & Laird, J. B. 1989, 97, 423 Google Scholar
Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485 Google Scholar
Duquennoy, A., & Mayor, M. 1992, in Binaries as Tracers of Stellar Formation, ed. Mayor, M. (Geneva, Geneva Obs.), in press Google Scholar
Goldman, I., & Mazeh, T. 1991, ApJ, 376, 260 Google Scholar
Koch, R. H., & Hrivnak, B. J. 1981, AJ, 86, 438 Google Scholar
Laird, J. B., Rupen, M. P., Carney, B. W., & Latham, D. W. 1988, AJ, 96, 1908 CrossRefGoogle Scholar
Latham, D. W., Mathieu, R. D., Milone, A. A. E., & Davis, R. J. 1992, this volume Google Scholar
Latham, D. W., Mazeh, T., Carney, B. W., McCrosky, R. E., Stefanik, R. P., & Davis, R. J. 1988, AJ, 96, 567.Google Scholar
Latham, D. W., Mazeh, T., Stefanik, R. P., Davis, R. J., Krimolowski, Y., & Laird, J. B. 1991, in preparation.Google Scholar
Mathieu, R. D., Latham, D. W., & Griffin, R. F. 1990, AJ, 100, 1859 CrossRefGoogle Scholar
Mathieu, R. D., & Mazeh, T. 1988, ApJ, 326, 256 Google Scholar
Mayor, M., & Mermilliod, J.-C. 1984, in IAU Symp. No. 105, Observational Tests of the Stellar Evolution Theory, eds. Maeder, A. & Renzini, A. (Dordrecht: Reidel), p. 411 Google Scholar
Mazeh, T. 1990, AJ, 99, 675 Google Scholar
Mazeh, T., Latham, D. W., Mathieu, R. D., & Carney, B. W. 1990, in NATO Advanced Study Institute on Active Close Binaries, ed. Ibagnolu, C. (Dordrecht: Kluwer), p. 145 Google Scholar
Mazeh, T., & Shaham, J. 1979, A&A, 77, 145 Google Scholar
Tassoul, J. L. 1988, ApJ, 324, L71 CrossRefGoogle Scholar
Zahn, J.-P. 1977, A&A, 57, 383 Google Scholar
Zahn, J.-P., & Bouchet, L. 1989, A&A, 223, 112 Google Scholar