Article contents
Thermal Inelastic Collision Processes
Published online by Cambridge University Press: 03 August 2017
Extract
Section II contains a summary of relevant collision theory methods. Section III is concerned with heavy particle collisions: excitation of H 1s hyperfine structure (hfs) states by H atom impact; excitation of H2 rotation by H and H2 impact; H 2s→2p transitions produced by proton impact; charge exchange reactions; excitation of atomic levels by proton impact. Section IV deals with inelastic collisions between atoms and electrons. Use of the Born and distorted wave approximations is discussed. Calculations of cross sections for excitation of forbidden lines in pq configurations are reviewed and new results presented for O+2, N+, C+, and Si+, both variational and semiempirical methods being used. In Sec. V, concerned with atomic photoionization, new results are given for photoionization from 2pq configurations.
- Type
- Part II: Theoretical Considerations on the Production and Dissipation of Velocity Fields in the Interstellar Medium
- Information
- Symposium - International Astronomical Union , Volume 8: Cosmical Gas Dynamics , July 1958 , pp. 979 - 991
- Copyright
- Copyright © American Physical Society 1958
References
1 Hebb, M. H. and Menzel, D. H., Astrophys. J. 92, 408 (1940).Google Scholar
2 (a) Seaton, M. J., Proc. Roy. Soc. (London) A208, 408 (1951); (b) Phil. Trans. A245, 469 (1953); (c) Proc. Roy. Soc. (London) A218, 400 (1953); (d) Ann. Astrophys. 17, 550 (1954); (e) The Airglow and the Aurorae , edited by Armstrong, E. B. and Dalgarno, A. (Pergamon Press, London, 1955), p. 289; (f) Ann. Astrophys. 18, 188 (1955); (g) ibid. 18, 206 (1955); (h) Compt. rend. 240, 1317 (1955); (i) Monthly Notices Roy. Astron. Soc. 115, 279 (1955); (j) Proc. Phys. Soc. (London) A68, 457 (1955); (k) Proc. Roy. Soc. (London) A231, 37 (1955); (l) Proc. Phys. Soc. (London) A70, 620 (1957).Google Scholar
3 Kohn, W., Phys. Rev. 74, 1763 (1948).Google Scholar
∗ It is assumed that exact atomic wave functions are used; an additional error will result from using approximate atomic functions.Google Scholar
4 Ham, F. S., Solid State Physics , edited by Seitz, F. and Turnbull, D. (Academic Press, Inc., New York, 1955), Vol. 1, p. 127.Google Scholar
5 Bates, D. R. and Dalgarno, A., The Airglow and the Aurorae , edited by Armstrong, E. B. and Dalgarno, A. (Pergamon Press, London, 1955), p. 328.Google Scholar
6 Purcell, E. M. and Field, G. B., Astrophys. J. 124, 542 (1956).CrossRefGoogle Scholar
7 See also Wittke, J. P. and Dicke, R. H., Phys. Rev. 103, 620 (1956).Google Scholar
8 Rhodes, J. E., Phys. Rev. 70, 932 (1946).Google Scholar
9 Spitzer, L., Astrophys. J. 109, 337 (1949).Google Scholar
10 Takayanagi, K., Proc. Phys. Soc. (London) A70, 348 (1957).Google Scholar
11 Margenau, H., Phys. Rev. 63, 131 (1943).Google Scholar
12 Evett, A. A. and Margenau, H., Phys. Rev. 90, 1021 (1953).CrossRefGoogle Scholar
13 Takayanagi, K. and Kaneko, S., Sci. Rept. Saitama Univ. A1, 111 (1954).Google Scholar
14 Spitzer, L. and Greenstein, J. L., Astrophys. J. 114, 407 (1951).CrossRefGoogle Scholar
15 Kipper, A. Y., Tartu Astron. Obs. Publ. 32, 63 (1952).Google Scholar
16 Purcell, E. M., Astrophys. J. 116, 457 (1952)Google Scholar
17 Dalgarno, A. and Yadav, H. N., Proc. Phys. Soc. (London) A66, 173 (1953).Google Scholar
18 Chamberlain, J. W., Astrophys. J. 124, 390 (1956).Google Scholar
† In the case of H 2s → 2p the large excitation rate for proton impact may be understood as a consequence of the threshold energies being very small.Google Scholar
19 Bates, D. R. and Spitzer, L. Astrophys. J. 113, 441 (1951).Google Scholar
20 Herzberg, G., Mém. soc. roy. sci. Liège 15, 291 (1955).Google Scholar
21 Massey, H. S. W., Handbuch der Physik (Springer-Verlag, Berlin, 1956), Vol. 36, p. 307; Revs. Modern Phys. 28, 199 (1956).Google Scholar
22 These figures are taken from Bates, Fundaminsky, Leech, , and Massey, , Phil. Trans. Roy. Soc. A243, 93 (1950).Google Scholar
23 Geltman, S., Phys. Rev. 102, 171 (1956).Google Scholar
24 Chamberlain, J. W., Astrophys. J. 117, 387 (1952).Google Scholar
25 McCarroll, R., Proc. Phys. Soc. (London) A70, 460 (1957).CrossRefGoogle Scholar
26 Moiseiwitsch, B. L., Monthly Notices Roy. Astron. Soc. 117, 189 (1957).Google Scholar
27 Condon, E. U. and Shortley, G. H., The Theory of Atomic Spectra (Cambridge University Press, New York, 1951), p. 98.Google Scholar
28 Yamanouchi, , Inui, , and Amemiya, , Proc. Phys. Math. Soc. Japan 22, 847 (1940).Google Scholar
29 Miyamoto, S., Mém. Coll. Sci., Kyoto Imp. Univ. A23, 467 (1941).Google Scholar
30 Aller, L. H., Astrophys. J. 111, 609 (1950).Google Scholar
31 Aller, L. H. and White, M. L., Astrophys. J. 54, 181 (1949).Google Scholar
32 Seaton, M. J. and Osterbrock, D. E., Astrophys. J. 125, 66 (1957).Google Scholar
33 Kennedy, J. M. and Cliff, M. J., Report CRT-609, Atomic Energy of Canada Ltd., Chalk River Project (1955).Google Scholar
‡ See reference 2(f). It may be noted that the agreement between the empirical and DW results for the individual elements of the S matrix is a good deal less satisfactory than the agreement between the final collision strengths.Google Scholar
34 Spitzer, L. and Savedoff, M. P., Astrophys. J. 111, 593 (1950).Google Scholar
35 Osterbrock, D. E., Phys. Rev. 87, 468 (1952).Google Scholar
36 Bransden, , Dalgarno, , John, , and Seaton, , Proc. Phys. Soc. (London) 71, 877 (1958).Google Scholar
37 Massey, H. S. W. and Moiseiwitsch, B. L., Proc. Roy. Soc. (London) A205, 483 (1951).Google Scholar
38 Staver, T. B., Arch. Math. Naturvidenskab B51, 29 (1951).Google Scholar
39 Borowitz, S. and Greenberg, H., Bull. Am. Phys. Soc. Ser. II, 2, 172 (1957).Google Scholar
40 Maecker, , Peters, , and Schenk, , Z. Physik 140, 119 (1955).Google Scholar
41 Pederson, , Malamud, , and Hammer, , Bull. Am. Phys. Soc. Ser. II, 2, 172 (1957).Google Scholar
42 Baker, J. G. and Menzel, D. H., Astrophys. J. 88, 52 (1938).Google Scholar
§ For previous calculations, see Bates, D. R. and Seaton, M. J., Monthly Notices Roy. Astron. Soc. 109, 698 (1949); Seaton, M. J., Proc. Roy. Soc. (London) A208, 408 (1951); Aller, L. H., Gaseous Nebulae (Chapman and Hall, Ltd., London, 1956), p. 145.Google Scholar
|| I am indebted to Miss C. Froese for the Ne+4 results and to Hartree, D. R. for Ne+3 .Google Scholar
43 Burgess, A. and Seaton, M. J., Revs. Modern Phys. 30, 992 (1958), following paper.Google Scholar
44 Bates, D. R., Monthly Notices Roy. Astron. Soc. 106, 432 (1946).Google Scholar
45 Po Lee, and Weissler, G. L., Proc. Roy. Soc. (London) A220, 71 (1953).Google Scholar
46 Bates, D. R. and Damgaard, A., Phil. Trans. Roy. Soc. London A242, 101 (1949).Google Scholar
47 Jutsum, P. J., Proc. Phys. Soc. (London) A67, 190 (1954).Google Scholar
48 Bates, D. R. and Massey, H. S. W., Proc. Roy. Soc. (London) A177, 329 (1941).Google Scholar
¶ Note added in proof (June 17, 1958).—Improved calculations [Burgess, Monthly Notices Roy. Astron. Soc. (to be published)] give radiative Balmer decrements similar to those obtained by Baker and Menzel. A recent experimental determination of the elastic electron-hydrogen cross section [Brackmann, Fite, and Neynaber, Phys. Rev. (to be published)] is consistent with the results of Table X. Field [Proc. Inst. Radio Engrs. 46, 240 (1958)] obtains cross sections for (49) in close agreement with our results.Google Scholar
- 1
- Cited by