Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T02:04:34.516Z Has data issue: false hasContentIssue false

Testing Pulsar Thermal Evolution Theories with Observation

Published online by Cambridge University Press:  19 July 2016

Sachiko Tsuruta*
Affiliation:
Montana State University, Bozeman, MT 59717, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the successful launch of Chandra and XMM-Newton, the time has arrived when careful comparison of thermal evolution theories of isolated neutron stars with observations will offer a better hope for distinguishing among various competing neutron star cooling theories. For instance, the latest theoretical and observational developments may already exclude both nucleon and kaon direct Urea cooling. In this way we can now have a realistic hope for determining various important properties, such as the composition, superfluidity, the equation of state and stellar radius. These developments should help us obtain deeper insight into the properties of dense matter.

Type
Part 1: Neutron Star Formation and Evolution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Becker, W. 1995, PhD thesis, Ludwig-Maximilians-University München.Google Scholar
Brown, G. E., Weingartner, J. C., & Wijers, R. A. 1996, ApJ, 463, 297.Google Scholar
Chao, N. C., Clark, J. W., & Yang, C. H. 1972, Nucl. Phys. A, 179, 320.Google Scholar
Flowers, E. G., Ruderman, M., & Sutherland, P. G. 1976, ApJ, 205, 541.Google Scholar
Lattimer, J. M., Pethick, C. J., Prakash, M., & Haensel, P. 1991, Phys. Rev. Lett., 66, 2701.CrossRefGoogle Scholar
Nomoto, K., & Tsuruta, S. 1986, ApJ, 305, L19.Google Scholar
Nomoto, K., & Tsuruta, S. 1987, ApJ, 312, 711.Google Scholar
Potenkin, A. Y., Yakovlev, D. G., Chabrier, G., & Gnedin, O. Y. 2003, ApJ, 594, 404.Google Scholar
Slane, P. O., Helfand, D. J., & Murray, S. S. 2002, ApJ, 571, L45.Google Scholar
Takahashi, H. et al. 2001, Phys. Rev. Lett., 87, 21.Google Scholar
Takatsuka, T., & Tamagaki, R. 1982, Prog. Theor. Phys., 67, 1649.CrossRefGoogle Scholar
Takatsuka, T., & Tamagaki, R. 1995, Prog. Theor. Phys., 94, 457.Google Scholar
Takatsuka, T., & Tamagaki, R. 1997, Prog. Theor. Phys., 97, 345.Google Scholar
Takatsuka, T., Nishizaki, S., Yamamoto, Y., & Tamagaki, R. 2001, Nucl. Phys. A, 691, 254c.Google Scholar
Takatsuka, T., Nishizaki, S., Yamamoto, Y., & Tamagaki, R. 2004, in preparation (Ta04a).Google Scholar
Tamagaki, R. 2004, in preparation (Ta04b).Google Scholar
Teter, M.A., Candler, W., Tsuruta, S., Takatsuka, T., Tamagaki, R., Fukumura, G. Pavlov, K., Nomoto, K., Umeda, H., & Tatsumi, T. 2004, in preparation (Te04).Google Scholar
Tsuruta, S. 1998, Phys. Rep., 292, 1 (T98).CrossRefGoogle Scholar
Tsuruta, S., & Cameron, A. G. W. 1966, Canad. J. Phys., 44, 1863.Google Scholar
Tsuruta, S., & Teter, M. A. 2001 in Proceedings of the 20th Texas Symposium, ed. Martel, H. & Wheeler, J.C. (AIP), 507 (TT01).Google Scholar
Tsuruta, S., Teter, M. A., Takatsuka, T., Tatsumi, T., Tamagaki, R. 2002, ApJ, 571, L143 (T02).Google Scholar
Tsuruta, S., Chandler, W., Teter, M. A., Takatsuka, T., Tamagaki, R., Fukumura, G. Pavlov, K., Nomoto, K., Umeda, H., & Tatsumi, T. 2004, in preparation (Ts04).Google Scholar
Umeda, H., Nomoto, K., Tsuruta, S., Muto, T., & Tatsumi, T. 1994, ApJ, 431, 309 (U94).Google Scholar
Umeda, H., Tsuruta, S., & Nomoto, K. 1994, ApJ, 433,256 (UTN94).Google Scholar
Yakovlev, D. G., Gnedin, O. Y., Kaminker, A. D., Levenfish, K. P., & Potenkin, A. Y. 2004, Adv. Sp. Res., 33, 523.CrossRefGoogle Scholar
Yakovlev, D. G., Levenfish, K. P., & Shibanov, Y. A. 1999, Phys. Usp., 42, 737.Google Scholar
Yakovlev, D. G. & Haensel, P. 2003, A&A, 407, 259.Google Scholar