Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T10:37:05.700Z Has data issue: false hasContentIssue false

Superclustering and Motion of Galaxy Clusters*

Published online by Cambridge University Press:  03 August 2017

Neta A. Bahcall*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evidence for the existence of very large scale structures, ∼ 100h−1 Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. A “shell model” of galaxy clustering is described in which clusters of galaxies are located at shell intersections; the model yields results consistent with cluster observations. Detection of a ∼ 2000 km s−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1 Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016,5M and may contain a larger amount of dark matter than previously anticipated.

Type
Research Article
Copyright
Copyright © Reidel 1988 

References

Abell, G. O., 1958, Ap. J. Suppl. 3, 211 Google Scholar
Bahcall, N. A., 1986, Ap. J. Letters 302, L41.CrossRefGoogle Scholar
Bahcall, N. A., and Burgett, W. S., 1986, Ap. J. Letters 300, L35.CrossRefGoogle Scholar
Bahcall, N. A., and Soneira, R. M., 1982a, Ap. J. Letters 258, L17.Google Scholar
Bahcall, N. A., and Soneira, R. M., 1982b, Ap. J. 262, 419.Google Scholar
Bahcall, N. A., and Soneira, R. M., 1983, Ap. J. 270, 20.Google Scholar
Bahcall, N. A., and Soneira, R. M., 1984, Ap. J. 277, 27.Google Scholar
Bahcall, N. A., and Soneira, R. M., and Burgett, W. S., 1986, Ap. J. 311, 15.CrossRefGoogle Scholar
Bahcall, N. A., Henriksen, M. J., and Smith, T. E., 1987, to be submitted to Ap. J. Google Scholar
de-Lapparent, V., Geller, M., and Huchra, J., 1986, Ap. J. Letters 302, L1.Google Scholar
Giovanelli, R., Haynes, M., and Chincarini, G., 1986, Ap. J. 300, 77.Google Scholar
Gregory, S. A., Thompson, L. A., and Tifft, W. G., 1981, Ap. J. 243, 411.Google Scholar
Groth, E., and Peebles, P. J. E., 1977, Ap. J. 217, 385.Google Scholar
Hauser, M. G., and Peebles, P. J. E., 1973, Ap. J. 185, 757.Google Scholar
Kirshner, R. P., Oemler, A. Jr., Schechter, P. L., and Shectman, S. A., 1981, Ap. J. Letters 248, L57.Google Scholar
Klypin, A. A., and Kopylov, A. I., 1983, Soviet Astronomy Letters 9, 41.Google Scholar
Postman, M., Geller, M., and Huchra, J., 1986, A.J. 91, 1267.Google Scholar
Shectman, S., 1985, Ap. J. Suppl. 57, 77.Google Scholar
Seldner, M., and Peebles, P. J. E., 1977, Ap. J. 215, 703.Google Scholar
Szalay, A. S., and Schramm, D. N., 1985, Nature 314, 718.Google Scholar
Turok, N. 1986, preprint.Google Scholar