Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T04:45:40.989Z Has data issue: false hasContentIssue false

The Sunyaev-Zel'dovich Effect and Cosmological Parameters

Published online by Cambridge University Press:  26 May 2016

Mark. Birkinshaw*
Affiliation:
Department of Physics, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Improved Sunyaev-Zel'dovich effect data from interferometers and single dishes, and new X-ray data from Chandra and XMM, are allowing a more detailed examination of the Sunyaev-Zel'dovich effect/X-ray technique for the measurement of distance, and hence the Hubble constant. This article reviews progress so far and the current results for H0, and discusses the potential of surveys for the Sunyaev-Zel'dovich effect as tests for cosmological parameters and cluster evolution.

Type
Part VIII: Dark Matter and Ω0
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Birkinshaw, M., Gull, S. F., & Northover, K. J. E. 1978. Nature, 275, 40.CrossRefGoogle Scholar
Birkinshaw, M., Gull, S. F., & Hardebeck, H. E. 1984. Nature, 309, 34.CrossRefGoogle Scholar
Birkinshaw, M. 1999. Phys. Reports, 310, 97.Google Scholar
Browne, I. W. A. et al. 2000. Proc. SPIE, in press.Google Scholar
Carlstrom, J. E., Joy, M., & Grego, L. 1996. ApJ, 456, L75 and erratum 461, L59.CrossRefGoogle Scholar
Carlstrom, J. E. et al. 2000. Physica Scripta, T85, 148.CrossRefGoogle Scholar
Challinor, R., Ford, M., & Lasenby, A. N., 1999. MNRAS, 312, 159.CrossRefGoogle Scholar
da Silva, A. C., Domingos, B., Liddle, A. R., & Thomas, P. A. 2000. MNRAS, 317, 37.Google Scholar
Ebeling, H. et al. 1996. MNRAS, 281, 799 and erratum 283, 1103.CrossRefGoogle Scholar
Glenn, J. et al. 1998. Proc. SPIE, 3357, 326.Google Scholar
Grego, L. et al. 2000. ApJ, submitted.Google Scholar
Holzapfel, W. L. et al. 1997. ApJ, 481, 35.Google Scholar
Itoh, N., Nozawa, S., & Kohyama, Y., 1999. ApJ, 533, 588.Google Scholar
Jones, M. et al. 1993. Nature, 365, 320.Google Scholar
Kompaneets, A. S. 1956. Zh. Eksp. Fiz. Teor., 31, 876.Google Scholar
Lo, K. Y. et al. 2000. These proceedings.Google Scholar
Molnar, S. M. & Birkinshaw, M. 2000. ApJ, 537, 542.CrossRefGoogle Scholar
Myers, S. T. et al. 1997. ApJ, 485, 1.CrossRefGoogle Scholar
Myers, S. T. 2000. These proceedings.Google Scholar
Pyne, T. & Birkinshaw, M. 1993. ApJ, 415, 459.CrossRefGoogle Scholar
Rees, M. J. & Sciama, D. W. 1968. Nature, 217, 511.Google Scholar
Rephaeli, Y. 1995. ApJ, 445, 33.CrossRefGoogle Scholar
Rephaeli, Y. 1996. ARA&A, 33, 541.Google Scholar
Saunders, R. et al. 2000. MNRAS, in press.Google Scholar
Sunyaev, R. A. & Zel'dovich, Ya.B. 1972. Comm. Ap. Sp. Phys., 4, 173.Google Scholar