Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T19:43:55.297Z Has data issue: false hasContentIssue false

The Sun in Submillimeter Radiation

Published online by Cambridge University Press:  03 August 2017

Charles Lindsey*
Affiliation:
Solar Physics Research Corporation, 4720 Calle Desecada, Tucson, AZ 85718, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Continuum observations in the far IR have given us a broad spectrum of new and powerful diagnostic utilities for the solar atmosphere. The infrared continuum is formed in LTE with thermal free electrons by free-free interactions. This gives us a flexible and accurate atmospheric thermometer that has made infrared measurements fundamental to modeling of the quiet solar medium for more than two decades. The submillimeter and millimeter continua are particularly useful with respect to thermal diagnostics of the low chromospheric temperature minimum, where non-radiative heating of the solar medium becomes clearly manifest. Modern submillimeter telescopes and instrumentation on Mauna Kea, in Hawaii, are now revolutionizing solar observations in the submillimeter spectrum, giving us the first observations of detail on the scale of the chromospheric supergranular network, sunspots and prominences. These observations are showing us a remarkable and unexpected view of thermal structure that emerges as one probes to successively higher levels above the chromospheric temperature minimum.

Type
Part 1: Infrared Diagnostics of the Solar Atmosphere and Solar Activity
Copyright
Copyright © Kluwer 1994 

References

Anderson, L.: 1992, private communication.Google Scholar
Boreiko, R.T. and Clark, T.A.: 1986, Astron. Astrophys., 157, 353.Google Scholar
Chang, E. S.: 1993, these proceedings.Google Scholar
Clark, T. A.: 1993, these proceedings.CrossRefGoogle Scholar
Coates, R. J.: 1958, Astrophys. J. 128, 83.CrossRefGoogle Scholar
Correia, E., Kaufmann, P. and Magnum, A.: 1993, these proceedings.Google Scholar
Harrison, R. A., Carter, M. K., Clark, T. A., Lindsey, C., Jefferies, J. T., Sime, D. G., Watt, G., Roellig, T. L., Becklin, E. E., Naylor, D. A., Tomkins, G. J. and Braun, D. C.: 1993, Astron. Astrophys., in press.Google Scholar
Jefferies, J. T.: 1993, these proceedings.Google Scholar
Hirayama, T.: 1985, Solar Phys., 100, 413.CrossRefGoogle Scholar
Hirayama, T., Nakagomi, Y. and Okmoto, T.: 1979 in Jensen, E., Maltby, P., and Orrall, F. Q. (eds.), ‘Physics of Solar Prominences’, Proc. IAU Colloq. 44, 48.Google Scholar
Kaufman, P., Correia, E., Costa, J. E. R. and Zodi, A. M.: 1993, these proceedings.Google Scholar
Kopp, G., Lindsey, C., Roellig, T. L., Werner, M. W., Becklin, E. E., Orrall, F. Q., Jefferies, J. T.: 1992, Astrophys. J. 388, 203.CrossRefGoogle Scholar
Kosugi, T., Ishiguro, M. and Kiyoto, S. K.: 1986, Pub. Astr. Soc. Japan, 38, 1.Google Scholar
Lindsey, C. and Jefferies, J. T.: 1991(a), Astrophys. J., 349, 286. (radiative transfer).CrossRefGoogle Scholar
Lindsey, C. and Jefferies, J. T.: 1991(b), Astrophys. J., 383, 443. (chromospheric supergranular network).CrossRefGoogle Scholar
Lites, B. W., Chipman, E. G. and White, O. R.: 1982, Astrophys. J., 253, 367.CrossRefGoogle Scholar
Maltby, P.: 1993, these proceedings.Google Scholar
Mickey, D. L.: 1985, Solar Phys., 97, 223.CrossRefGoogle Scholar
Naylor, D. A.: 1993, these proceedings.Google Scholar
Noyes, R. W., Beckers, J. M. and Low, F. J.: 1968, Solar Phys. 3, 36.CrossRefGoogle Scholar
Rutten, R. and Carlsson, M.: 1993, these proceedings.Google Scholar
Simon, M. and Zirin, H.: 1969, Solar Phys., 9, 317.CrossRefGoogle Scholar
Vernazza, J. E., Avrett, E. H., and Loeser, R.: 1981, Astrophys. J. Supp., 45, 635.CrossRefGoogle Scholar