Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:36:11.979Z Has data issue: false hasContentIssue false

Subaru Spectroscopy of the Giant Lyα Nebula around 1243+036

Published online by Cambridge University Press:  26 May 2016

Youichi Ohyama
Affiliation:
Subaru Telescope, NAOJ, 650 North Aòhoku Pl., Hilo, HI 96720, USA
Yoshiaki Taniguchi
Affiliation:
Astronomical Institute, Faculty of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our new spatially-resolved, optical spectroscopy of the giant Lyα nebula around the powerful radio galaxy 1243+036 (=4C+03.24) at z = 3.57. The nebula is extended over ~ 30 kpc from the nucleus, and forms a pair of cones or elongated bubbles. The high-velocity (~ −1000 km s−1; blueshifted with respect to the systemic velocity) Lyα-emitting components are detected at both sides of the nucleus along its major axis. We discuss possible origin of the nebula; 1) the shock-heated expanding bubble or outflowing cone associated with the superwind activity of the host galaxy, 2) halo gas photoionized by the anisotropic radiation from the active galactic nuclei (AGN) and 3) the jet-induced star-formation or shock. The last possibility may not be likely because Lyα emission is distributed out of the narrow channel of the radio jet. We show that the superwind model is most plausible since it can explain both the characteristics of the morphology (size and shape) and the kinematical structures (velocity shift and line width) of the nebula although the photoionization by AGN may contribute to the excitation to some extent.

Type
Part 3. Ejection and Outflow
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Arimoto, N., & Yoshii, Y. 1987, A&A, 173, 23.Google Scholar
Chambers, K. C., Miley, G. K., & van Breugel, W. 1987, Nature, 329, 604.CrossRefGoogle Scholar
Cimatti, A., di Serego Alighieri, S., Vernet, J., Cohen, M., & Fosbury, R. A. E. 1998, ApJ, 355, 416.Google Scholar
De Breuck, C., Röttgering, H., Miley, G., van Breugel, W., & Best, P. 2000, A&A, 362, 519.Google Scholar
Dey, A., van Breugel, W., Vacca, W. D., & Antonucci, R. 1997, ApJ, 490, 698.CrossRefGoogle Scholar
Heckman, T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833.CrossRefGoogle Scholar
Hibbard, J. H., & Yun, M. S. 1999, AJ, 118, 162.CrossRefGoogle Scholar
Lacy, M., et al. 1994, MNRAS, 271, 504.CrossRefGoogle Scholar
McCarthy, P. J., van Breugel, W. J. M., Spinrad, H., & Djorgovski, S. G. 1987, ApJ, 321, L29.CrossRefGoogle Scholar
Mihos, J. C., & Bothun, G. D. 1998, ApJ, 500, 619.CrossRefGoogle Scholar
Pentericci, L., Röttgering, H. J. A., Miley, G. K., McCarthy, P., Spinrad, H., van Breugel, W. J. M., & Macchetto, F. 1999, A&A, 341, 219.Google Scholar
Pentericci, L., McCarthy, P. J., Röttgering, H. J. A., Miley, G. K., van Breugel, W. J. M., & Fosbury, R. 2001, ApJS, 135, 63.CrossRefGoogle Scholar
Röttgering, H. J. A., van Ojik, R., Miley, G. K., Chambers, K. C., van Breugel, W. J. M., & de Koff, S. 1997, A&A, 326, 505.Google Scholar
Rush, B., McCarthy, P. J., Athreya, R. M., & Persson, S. E. 1997, ApJ, 484, 167.CrossRefGoogle Scholar
Taniguchi, Y., et al. 2001, ApJ, 559, L9.CrossRefGoogle Scholar
van Breugel, W. J. M., Stanford, S. A., Spinrad, H., Stern, D., & Grapham, J. R. 1998, ApJ, 502, 614.CrossRefGoogle Scholar
van Ojik, R., Röttgering, H. J. A., Carilli, C. L., Miley, G. K., Bremer, M. N., & Macchetto, F. 1996, A&A, 313, 25 (vO96).Google Scholar
van Ojik, R., Röttgering, H. J. A., Miley, G. K., & Hunstead, R. W. 1997, A&A, 317, 358.Google Scholar