Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T20:49:46.682Z Has data issue: false hasContentIssue false

Subaru AO Coronagraphic and Direct Imaging of YSOs

Published online by Cambridge University Press:  23 September 2016

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A cold near-infrared stellar coronagraph combined with adaptive optics (CIAO) is introduced. As an open-use instrument on the Subaru 8.2-m telescope, it has been used for several star formation studies with high spatial resolutions (from natural seeing of about 0.6 arcsec down to 0.07 arcsec with adaptive optics). A brief explanation is described of the instrument as well as its current main project of systematic surveys of disks and young companions around T Tauri stars and Herbig Ae/Be stars. In particular, observations of HL Tau are presented in some details. Our images of HL Tau show several new circumstellar features including the presence of a red H - K color region of ∼150 AU, probably corresponding to the small circumstellar disk. The observations of a high density stellar cluster of MWC 137 are also reported. It appears to be a cluster of very low-mass stars around Herbig Be star or a cluster of B stars around a super giant.

Type
Part 6: First Results from New Facilities
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Close, L. M. et al. 1997, ApJ, 478, 766.CrossRefGoogle Scholar
Esteban, C., & Fernández, M. 1998, MNRAS, 298, 185.CrossRefGoogle Scholar
Fukagawa, M. et al. 2003, ApJ, 590, L49.Google Scholar
Henning, Th. et al. 1998, A&A, 336, 565.Google Scholar
Hayashi, M., Ohashi, N., & Miyama, S. M. 1993, ApJ, 418, L71.CrossRefGoogle Scholar
Hillenbrand, L. A. et al. 1992, ApJ, 397, 613.Google Scholar
Itoh, Y. et al. 2002, PASJ, 54, 963.Google Scholar
Kitamura, Y. et al. 2002, ApJ, 581, 357.Google Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ, 529, 477.Google Scholar
Lucas, P. W., Fukagawa, M. et al. 2003, in preparation.Google Scholar
Mundt, R., Ray, T. P., & Buhrke, T. 1988, ApJ, 333, L69.Google Scholar
Mundy, L. G. et al. 1996, ApJ, 464, L169.CrossRefGoogle Scholar
Murawaka, K. et al. 2003, Proc. SPIE, 4841, 881.CrossRefGoogle Scholar
Nagayama, T. et al. 2002, Proc. SPIE, 4841, 2002.Google Scholar
Ray, T. P. et al. 1996, ApJ, 468, L103.Google Scholar
Sargent, A. I., & Beckwith, S. 1987, ApJ, 323, 294.CrossRefGoogle Scholar
Sargent, A. I., & Beckwith, S. V. W. 1991, ApJ, 382, L31.CrossRefGoogle Scholar
Stapelfeldt, K. R. et al. 1995, ApJ, 449, 888.CrossRefGoogle Scholar
Tamura, M., Gatley, I., Waller, W., & Werner, M. W. 1991, ApJ, 378, 611.Google Scholar
Tamura, M. et al. 1998, Proc. SPIE, 3354, 845.Google Scholar
Tamura, M. et al. 2003, Proc. SPIE, 4843, 190.Google Scholar
Tamura, M. et al. 2000, Proc. SPIE, 4008, 1153.CrossRefGoogle Scholar
Testi, L. et al. 1997, A&A, 320, 159.Google Scholar
Weintraub, D. A., Kastner, J. H., & Whitney, B. A. 1995, ApJ, 452, L141.Google Scholar