Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T20:31:56.588Z Has data issue: false hasContentIssue false

The Structures and Kinematics of Protoclusters

Published online by Cambridge University Press:  23 September 2016

James Di Francesco*
Affiliation:
National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Rd., Victoria, BC V9E 2E7 CANADA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Embedded clusters produce the greatest numbers of stars within our Galaxy but the process by which clusters themselves form is not well understood. The structures and kinematics of the very youngest embedded clusters, i.e., “protoclusters” with ages <106 yr, should provide needed insight. To gauge their utility in this regard, we examine recent observations of a nearby protocluster in Ophiuchus. Near-infrared images of the Oph A core reveal numerous young objects but the small sky coverages or low sensitivities to highly-embedded objects attained so far limit their usefulness in revealing cluster structure. Submillimeter continuum images do reveal the most embedded objects but their relatively low resolutions preclude effective comparisons with near-infrared images. Interferometric millimeter observations of N2H+ 1-0 show a strong spatial coincidence with the submillimeter continuum objects, and can be used to trace radial velocities of this population at least. The Oph A filament shows small radial velocity dispersions, e.g., ∼0.2 km s-1, at odds with predictions from some theories of cluster formation. The upcoming C2D and COMPLETE surveys of nearby star-forming molecular clouds will produce the sensitive, wide-field data needed to understand better the cluster formation process.

Type
Part 5: Low Mass Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aikawa, Y., Ohashi, N., & Herbst, E. 2003, ApJ, 593, 906 CrossRefGoogle Scholar
Allen, L. E., Myers, P. C., Di Francesco, J., Mathieu, R., Chen, H., & Young, E. 2002, ApJ, 566, 993 CrossRefGoogle Scholar
André, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122 CrossRefGoogle Scholar
André, P., Ward-Thompson, D., & Barsony, M. 2003, in Protostars and Planets IV , eds. Mannings, V., Boss, A. P., & Russell, S. S., (Tucson: University of Arizona), p. 59 Google Scholar
Barsony, M., Kenyon, S. J., Lada, E. A., & Teuben, P. J. 1997, ApJS, 112, 109 CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001, MNRAS, 322, 859 CrossRefGoogle Scholar
de Geus, E. 1992, A&A, 262, 258 Google Scholar
de Geus, E., de Zeeuw, P., & Lub, J. 1989, A&A, 216, 44 Google Scholar
Di Francesco, J., André, P., & Myers, P. C. 2003, in preparation Google Scholar
Elmegreen, B. G., Efremov, Y., Pudritz, R. E., & Zinnecker, H. 2003, in Protostars and Planets IV , eds. Mannings, V., Boss, A. P., & Russell, S. S., (Tucson: University of Arizona), p. 179 Google Scholar
Evans, N. J. II, et al., PASP, 115, 965 CrossRefGoogle Scholar
Johnstone, D., Wilson, C. D., Moriarty-Schieven, G., Joncas, G., Smith, G., Gregersen, E., & Fich, M. 2000, ApJ, 545, 327 CrossRefGoogle Scholar
Knee, L. B. G., & Sandell, G. 1999, A&A, 361, 671 Google Scholar
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57 Google Scholar
Motte, F., André, P., & Neri, R. 1998, A&A, 336, 150 Google Scholar
Porras, A., Christopher, M., Allen, L. E., Di Francesco, J., Megeath, C. T., & Myers, P. C. 2003, AJ, in press Google Scholar
Sandell, G. & Knee, L. B. G. 2001, ApJ, 546, L49 CrossRefGoogle Scholar
Walsh, A. J., Di Francesco, J., Myers, P. C., Bourke, T. L., & Wilner, D. J. 2003, in preparation Google Scholar
Wilson, C. D., Avery, L. W., Fich, M., Johnstone, D., Joncas, G., Knee, L. B. G., Matthews, H. E., Mitchell, G. F., Moriarty-Schieven, G., & Pudritz, R. E. 1999, AJ, 513, L139 CrossRefGoogle Scholar