Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:47:35.829Z Has data issue: false hasContentIssue false

Statistical Methodology for Large Astronomical Surveys

Published online by Cambridge University Press:  25 May 2016

E.D. Feigelson
Affiliation:
Dept. of Astron & Astrophys, Pennsylvania State University
G.J. Babu
Affiliation:
Dept. of Statistics, Pennsylvania State University

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiwavelength surveys present a variety of challenging statistical problems: raw data processing, source identification, source characterization and classification, and interrelations between multiwavelength properties. For these last two issues, we discuss the applicability of standard and new multivariate statistical techniques. Traditional methods such as ANOVA, principal components analysis, cluster analysis, and tests for multivariate linear hypotheses are underutilized in astronomy and can be very helpful. Newer statistical methods such as projection pursuit, multivariate splines, and visualization tools such as XGobi are briefly introduced. However, multivariate databases from astronomical surveys present significant challenges to the statistical community. These include treatments of heteroscedastic measurement errors, censoring and truncation due to flux limits, and parameter estimation for nonlinear astrophysical models.

Type
Part 7. Data Processing Techniques
Copyright
Copyright © Kluwer 1998 

References

Akritas, M.G. and Siebert, J. (1996) Testing for partial association using Kendall's τ with censored astronomical data. Mon. Not. R. astron. Soc, in press.Google Scholar
Babu, G.J. and Feigelson, E.D. (1996) Astrostatistics. Chapman & Hall, London.Google Scholar
Babu, G.J. and Feigelson, E.D. (1997) Statistical Challenges in Modern Astronomy II. Springer-Verlag, New York.Google Scholar
Bijaoui, A., Rué, F and Savalle, R. (1997), in Statistical Challenges in Modern Astronomy II. Springer-Verlag, New York.Google Scholar
Deeming, T.J. (1964) Stellar spectral classification. I. Application of component analysis, Mon. Not. R. astron. Soc 127, 493.Google Scholar
Feigelson, E.D. (1992) Censoring in astronomical data due to nondetections (with discussion), in Statistical Challenges in Modern Astronomy, (Feigelson, E. D. & Babu, G. J., eds.), Springer-Verlag, New York. p. 221.Google Scholar
Feigelson, E.D. and Babu, G.J. (1992) Statistical Challenges in Modern Astronomy. Springer-Verlag, New York.Google Scholar
Feigelson, E.D., Akritas, M., and Rosenberger, J. (1995) Statistical Consulting Center for Astronomy, in Astronomical Data Analysis Software and Systems IV (Shaw, R.A. et al., eds.). Astron. Soc. Pacific, San Francisco.Google Scholar
Francis, P.J., Hewett, P.C., Foltz, C.B., and Chaffee, F.H., (1992) An objective classification scheme for QSO spectra, Astrophys. J 398, 476.Google Scholar
Friedman, J.H. (1987) Exploratory projection pursuit, J. Amer. Stat. Assn., 82, 239.Google Scholar
Friedman, J.H. (1991) Multivariate adaptive regression splines (with discussion), Annals of Statistics 19, 1.Google Scholar
Hanisch, R.J. and White, R.L., (eds.) (1993) The Restoration of HST Images and Spectra II, STScI: Baltimore.Google Scholar
Hoaglin, D.C., Mosteller, F. and Tukey, J.W., (eds.) (1983) Understanding Robust and Exploratory Data Analysis. Wiley, New York.Google Scholar
Huber, P.J. (1985) Projection Pursuit, Annals of Statistics 13, 435.Google Scholar
Jaschek, C., and Murtagh, F., (eds.) (1990) Errors, Bias and Uncertainties in Astronomy. Cambridge University Press, Cambridge.Google Scholar
Johnson, R.A. and Wichern, D.W. (1992) Applied Multivariate Statistical Analysis, 3rd edition, NJ: Prentice Hall.Google Scholar
Jöreskog, K. G., and Sörbom, D., 1989, LISREL 7 A Guide to the Program and Applications, SPSS Inc., 444 N. Michigan Ave., Chicago IL 60611.Google Scholar
Lahav, O. et al. (1995) Galaxies, human eyes and artificial neural networks, Science 267, 859.CrossRefGoogle ScholarPubMed
Maddala, G.S. (1983) Limited-dependent and quantitative variables in econometrics. Cambridge University Press, Cambridge.Google Scholar
Moshir, M. et al. (1992) IRAS Faint Source Survye Explanatory Supplement Version 2. IPAC, Pasadena CA.Google Scholar
Murtagh, F., and Heck, A. (1987) Multivariate Data Analysis. Reidel, Dordrecht Neth.Google Scholar
Narayan, R. and Nityananda, R. (1986) Maximum entropy image restoration in astronomy, Ann. Rev. Astro. Astrophys. 24, 127.CrossRefGoogle Scholar
Perley, R.A., Schwab, F. and Bridle, A.H. (1989) Synthesis Imaging in Radio Astronomy. Astron. Soc. Pacific, San Francisco.Google Scholar
Press, W.H. et al. (1992) Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge.Google Scholar
Rolfe, E.J., (ed.) (1983) Statistical Methods in Astronomy. ESA SP 201, European Space Agency Scientific & Technical Publications. Noordwijk Neth.Google Scholar
Starck, J.-L. and Murtagh, F. (1994) Image restoration with noise suppression using the wavelet transform, Astron. Astrophys. 288, 342.Google Scholar
Stigler, S.M. (1986) The History of Statistics: The Measurement of Uncertainty Before 1900. Harvard University Press, Cambridge.Google Scholar
Subba Rao, T., (ed.) (1997) Applications of Time Series Analysis in Astronomy and Meteorology. Chapman & Hall, London.Google Scholar
White, R.L. (1997) Object classification in astronomical images, in Statistical Challenges in Modern Astronomy II (Babu, G.J. & Feigelson, E.D., eds.), Springer, New York.Google Scholar
Whitmore, B.C. (1984) An objective classification systems for spiral galaxies. I. The two dominant dimensions, Astrophys. J 278, 6.Google Scholar
Wegman, E.J., Carr, D.B., King, R.D., Miller, J.J., Poston, W.L., Solka, J.L. and Wallin, J. (1997) Statistical software, siftware and astronomy, in Statistical Challenges in Modern Astronomy II (Babu, G.J. and Feigelson, E.D., eds.). Springer-Verlag, New York.Google Scholar