Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T04:58:54.788Z Has data issue: false hasContentIssue false

Spectroscopy of Stellar X-ray Sources in the Magellanic Clouds

Published online by Cambridge University Press:  04 August 2017

J. B. Hutchings*
Affiliation:
Dominion Astrophysical Observatory, Victoria, B.C., Canada, V8X 4M6

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the Magellanic Clouds, about 75 candidate stellar X-ray sources have been detected. Most of these positions have now been investigated and optical identifications made for ~ 50%. The majority of sources are foreground dwarf stars or background active galaxies. Detailed investigations exist for 3 SMC sources and 6 LMC sources. It is possible to make a preliminary comparison with the population of galactic X-ray sources. The Magellanic Cloud X-ray binaries have a number of unique or remarkable properties and the most important ones are presented and discussed. These include the most rapid pulsars (SMC X-1, 0538–66), the possible precessing disk in LMC X-4, and the black hole candidates LMC X-3, LMC X-1. The properties of these objects relate to the evolution of stars in the Magellanic Clouds and how it differs from the Galaxy.

Type
Supernova Remnants, Radio Continuum, X-ray Sources
Copyright
Copyright © Reidel 1984 

References

Charles, P.A. et al.: 1982, MNRAS 202, 657.Google Scholar
Chevalier, C., Ilovaisky, S.A.: 1977, A & Ap. 59, L9.Google Scholar
Clark, G., et al.: 1978, Ap. J. 221, L37.Google Scholar
Clark, G., Li, F., Van Paradijs, J.: 1979, Ap. J. 227, 54.Google Scholar
Cowley, A.P., et al.: 1983, Ap. J. in press.Google Scholar
Cowley, A.P., et al.: 1983, in preparation.Google Scholar
Crampton, D., Hutchings, J.B., and Cowley, A.P.: 1978, Ap. J. 223, L79.Google Scholar
Crampton, D., et al.: 1983, preprint.Google Scholar
Hammerschlag-Hensberge, G., Kallman, T.R., Howarth, I.D.: 1983, preprint Google Scholar
Howarth, I.D. et al.: 1983, preprint.Google Scholar
Hutchings, J.B. et al.: 1977, Ap. J. 217, 188.Google Scholar
Hutchings, J.B., 1982: Galactic X-ray Sources: Wiley pl.Google Scholar
Hutchings, J.B., 1983, Adv. Space Res. 2, 75.Google Scholar
Hutchings, J.B., Crampton, D., and Cowley, A.P.: 1983, Ap. J. preprint.Google Scholar
Hutchings, J.B., Cowley, A.P., and Crampton, D.: 1982, PASP 95, 23.Google Scholar
Hutchings, J.B., Crampton, D., Cowley, A.P.: 1978, Ap. J. 248, 925.Google Scholar
Kelley, R.L., et al.: 1982, Ap. J. 264, 568.Google Scholar
Lang, F.L. et al.: 1981, Ap. J. 246, L21.Google Scholar
Li, F., Rappaport, S., and Epstein, A.: 1978, Nature 271, 37.Google Scholar
Long, K., Helfand, D.J., and Grabelsky, D.S.: 1981, Ap. J. 248, 925.Google Scholar
Pakull, M., and Swings, J.P.: 1979, IAUC 3318.Google Scholar
Petro, L.D., and Hiltner, W.A.: 1982, A. J. preprint.Google Scholar
Primini, F., Rappaport, S., Joss, P.C.: 1977, Ap. J. 217, 543.Google Scholar
Rappaport, S.: 1982, Galactic X-ray Sources: Wiley p. 171.Google Scholar
Seward, F.D., Mitchell, M.: 1981, Ap. J. 243, 736.Google Scholar
Skinner, G.K., et al.: 1982, Nature 297, 568.Google Scholar
van der Klis, M., et al.: 1982, A & Ap. 106, 339.Google Scholar
van Paradijs, J., and Zuiderwijk, F.: 1977, A & Ap. 61, L19.Google Scholar
White, N.E.: 1978, Nature, 271, 38.Google Scholar