Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T20:27:16.420Z Has data issue: false hasContentIssue false

Solar Magnetic Loops Observed with TRACE and EIT

Published online by Cambridge University Press:  26 May 2016

Markus J. Aschwanden
Affiliation:
Lockheed Martin, Solar & Astrophysics Laboratory, Palo Alto, CA 94304, USA
Alan M. Title
Affiliation:
Lockheed Martin, Solar & Astrophysics Laboratory, Palo Alto, CA 94304, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We select some highlights and new results that have been obtained from detailed “microscopic” observations of coronal loop structures with the Transition Region and Coronal Explorer (TRACE) and Extreme Ultraviolet Imager (EIT) instruments, including: (1) the inhomogeneous substructure of EUV loops, (2) the dynamic and non-hydrostatic nature, (3) the non-uniform heating, (4) the magnetic topology at the loop foot-points, (5) the magnetic energy budget for heating, and (6) oscillations and waves in coronal loops.

Type
Part 10: Structural Elements: Magnetic Loops
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Antiochos, S.K. 1998, ApJ, 502, L181.CrossRefGoogle Scholar
Aschwanden, M.J., Fletcher, L., Schrijver, C., et al. 1999, ApJ, 520, 880.Google Scholar
Aschwanden, M.J., Alexander, D., Hurlburt, N., et al. 2000a, ApJ, 531, 1129.Google Scholar
Aschwanden, M.J., Nightingale, R.W., & Alexander, D. 2000b, ApJ, 541, 1059.Google Scholar
Aschwanden, M.J. & Acton, L.W. 2001, ApJ, 550, 475.CrossRefGoogle Scholar
Aschwanden, M.J., Schrijver, C.J., and Alexander, D. 2001, ApJ, 550, 1036.Google Scholar
Aschwanden, M.J. 2002a, ApJ, 580, L79.Google Scholar
Aschwanden, M.J. 2002b, COSPAR Coll. Ser.13, (eds. Martens, P. & Cauffman, D.), 57.Google Scholar
Aschwanden, M.J., DePontieu, B., Schrijver, C.J., Title, A.M. 2002c, Solar Phys., 206, 99.Google Scholar
Brown, D.S. & Priest, E.R. 2001, AA, 367, 339.Google Scholar
DeMoortel, I., Ireland, J., Hood, A.W., & Walsh, R.W. 2002, AA, 387, L13.CrossRefGoogle Scholar
DePontieu, B., Tarbell, T., & Erdélyi, R. 2003, ApJ, 590, 502.Google Scholar
Domínguez-Cerdeña, I., Kneer, F., & Sánchez-Almeida, J. 2003, ApJ, 582, L55.CrossRefGoogle Scholar
Gudiksen, B.V. & Nordlund, Å. 2002, ApJ, 572, L113.CrossRefGoogle Scholar
Hagenaar, H.J., Schrijver, C. J., & Title, A.M. 2003, ApJ, 584, 1107.Google Scholar
Harvey, K.L. & Martin, S.F. 1973, Solar Phys. 32, 389.CrossRefGoogle Scholar
Lenz, D.D., DeLuca, E.E., Golub, L., Rosner, R., & Bookbinder, J.A. 1999, ApJ, 517, L155.Google Scholar
Martens, P.C.H., Cirtain, J.W., and Schmelz, J.T. 2002, ApJ, 577, L115.CrossRefGoogle Scholar
Priest, E.R., Heyvaerts, J.F., & Title, A.M. 2002, ApJ, 576, 533.CrossRefGoogle Scholar
Rosner, R., Tucker, W.H., & Vaiana, G.S. 1978, ApJ, 220, 643.Google Scholar
Schmelz, J.T., Scopes, R.T., Cirtain, J.W., Winter, H.D., & Allen, J.D. 2001, ApJ, 556, 896.CrossRefGoogle Scholar
Schrijver, C.J. and 16 co-authors 1999, Solar Phys., 187, 261.Google Scholar
Schrijver, C.J. & Title, A.M. 2002, Solar Phys. 207, 223.Google Scholar
Serio, S., Peres, G., Vaiana, G.S., Golub, L., and Rosner, R. 1981, ApJ, 243, 288.Google Scholar
Warren, H.P., Winebarger, A.R., & Hamilton, P.S. 2002, ApJ, 579, L41.Google Scholar
Winebarger, A.R., Warren, H.P., & Seaton, D.B. 2003, ApJ, 593, 1164.Google Scholar
Withbroe, G.L. & Noyes, R.W. 1977, Ann. Rev. Astron. Astrophysics, 15, 363.Google Scholar