Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T10:55:12.806Z Has data issue: false hasContentIssue false

The Role of Binaries in the Dynamical Evolution of the Core of a Globular Cluster

Published online by Cambridge University Press:  25 May 2016

Piet Hut*
Affiliation:
Institute for Advanced Study, Princeton, NJ 08540, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The size of the core is one of the main diagnostics of the evolutionary state of a globular cluster. Much has been learned over the last few years about the behavior of the core radius during and after core collapse, under a variety of different conditions related to the presence or absence of large numbers of binaries. An overview is presented of the basic physical principles that can be used to estimate the core radius. Four different situations are discussed, and expressions are presented for the ratio rc/rh of core radius to half mass radius. The regimes are: deep collapse in the absence of primordial binaries; steady post-collapse evolution after primordial binaries have been burned up; chaotic post-collapse evolution under the same conditions; and post-collapse evolution in the presence of primordial binaries. In addition, modifications to all of these cases are indicated for the more realistic situation where effects of the galactic tidal field are taken into account.

Type
Stellar Dynamics, Models
Copyright
Copyright © Kluwer 1996 

References

Bettwieser, E. & Sugimoto, D. 1984, MNRAS, 208, 439 Google Scholar
Breeden, J.L., Packard, N.H. & Cohn, H.N. 1990, preprint Google Scholar
Breeden, J.L. & Cohn, H.N. 1995, ApJ, 448, 672 CrossRefGoogle Scholar
Cohn, H.N., Lugger, P.M., Grabhorn, R.P., Breeden, J.L., Packard, N.H., Murphy, B.W. & Hut, P. 1991, in The Formation and Evolution of Star Clusters, A.S.P Conference Series, 13, ed. Janes, K. (ASP, San Francisco), p. 381 Google Scholar
Gao, B., Goodman, J., Cohn, H. & Murphy, B. 1991, ApJ, 370, 567 CrossRefGoogle Scholar
Goodman, J. 1984, ApJ, 280, 298 CrossRefGoogle Scholar
Goodman, J. 1987, ApJ, 313, 576 CrossRefGoogle Scholar
Goodman, J. 1993, in Dynamics of Globular Clusters, eds. Djorgovski, S. and Meylan, G. (San Francisco: ASP), p. 87 Google Scholar
Goodman, J. & Hut, P. (eds.) 1985, Dynamics of Star Clusters, IAU Symp. No. 113 (Dordrecht: Reidel)CrossRefGoogle Scholar
Goodman, J. & Hut, P. 1989, Nature, 339, 40 CrossRefGoogle Scholar
Hut, P. & Inagaki, S., 1985, ApJ, 298, 502 CrossRefGoogle Scholar
Hut, P., McMillan, S. L. W., Goodman, J. G., Mateo, M., Phinney, E. S., Pryor, C., Richer, H. B., Verbunt, F., & Weinberg, M. 1992, PASP, 105, 981 CrossRefGoogle Scholar
Inagaki, S. 1986, PASJ, 38, 853 Google Scholar
Kundić, T. & Ostriker, J. P. 1995, ApJ, 438, 702 CrossRefGoogle Scholar
Lynden-Bell, D. & Wood, R 1968, MNRAS, 138, 495 CrossRefGoogle Scholar
McMillan, S.L.W. 1986, ApJ, 307, 126 CrossRefGoogle Scholar
McMillan, S.L.W. 1989, in Dynamics of Dense Stellar Systems, ed. Merritt, D. (Cambridge University Press), p. 207 Google Scholar
McMillan, S.L.W., Hut, P. & Makino, J. 1990, ApJ, 362, 522 CrossRefGoogle Scholar
McMillan, S.L.W., Hut, P. & Makino, J. 1991, ApJ, 372, 111 CrossRefGoogle Scholar
McMillan, S. & Hut, P. 1994, ApJ, 427, 793 CrossRefGoogle Scholar
Murphy, B.W., Cohn, H.N. & Hut, P. 1990, MNRAS, 245, 335 Google Scholar
Spitzer, L., 1987, Dynamical Evolution of Globular Clusters [Princeton Univ. Pr.]Google Scholar
Sugimoto, D. & Bettwieser, E. 1983, MNRAS, 204, 19p CrossRefGoogle Scholar
Weinberg, M. D. 1994, AJ, 108, 1414 CrossRefGoogle Scholar