Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T15:32:14.409Z Has data issue: false hasContentIssue false

Reference frames in relativistic space-time

Published online by Cambridge University Press:  03 August 2017

M. Soffel
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG SFB78 Satellitengeodäsie, Technische Universität München, D-8000 München, FRG
H. Herold
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG
H. Ruder
Affiliation:
Lehrstuhl für Theor. Astrophysik, Auf der Morgenstelle 12, D-7400 Tübingen, FRG
M. Schneider
Affiliation:
SFB78 Satellitengeodäsie, Technische Universität München, D-8000 München, FRG

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitational compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts we discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

Type
I. Celestial Reference Systems
Copyright
Copyright © Reidel 1988 

References

Hirayama, T., Kinoshita, H., Fujimoto, M., Fukushima, T., 1985, Analytical Expression of TDB-TDT, presented at the IAU General Assembly 1985, Delhi Google Scholar
Kaplan, G., 1981, The IAU Resolutions on Astronomical Constants, Time Scales, and the Fundamental Reference Frame, U.S. Naval Observatory, Circular No. 163 Google Scholar
Knowles, S., Waltman, W., Hulburt, E., Cannon, W., Davidson, D., Patraschenko, W., Yen, J., Popelar, J., Galt, J. 1982 Development of a phase - coherent local oscillator for a geodetic VLBI network, NOAA Techn. Report No. 95 NGS 24 Google Scholar
Misner, Ch., Thorne, K., Wheeler, J., 1973, Gravitation, Freeman, San Francisco Google Scholar
Moyer, T., 1981, Celestial Mechanics 23, 33 and 57 CrossRefGoogle Scholar
Nordtvedt, K., 1971, Phys. Rev. D3, 1683 Google Scholar
Rotge, J., Shaw, G., Emrick, H., 1985, Measuring Earth Rate Perturbations with a Large Passive Ring Laser Gyro, Proc. of the Int. Conf. on Earth Rotation and the Terrestrial Reference Frame, July 31 - Aug. 2, Columbus, Ohio, Vol. II, 719 ed. by Mueller, I. Google Scholar
Scully, M., Zubairy, M., Haugan, M., 1981, Phys. Rev. A24, 2009 CrossRefGoogle Scholar
Soffel, M., Schastok, J., Ruder, H., Schneider, M., 1985, Astrophys. Space Sci. 110, 95 CrossRefGoogle Scholar
Soffel, M., Herold, H., Ruder, H., Schneider, M., 1986a, Reference Frames in Relativistic Space-Time , Veröf. d. Bayr. Kom. f. d. intern. Erdm., Astronomisch - Geodätische Arbeiten 48, 237 Google Scholar
Soffel, M., Herold, H., Ruder, H., Schneider, M., 1986b, Relativistic Geodesy: The Concept of Asymptotically Fixed Reference Frames, to be published Google Scholar
Will, C., 1971, Ap. J., 169, 141 CrossRefGoogle Scholar
Will, C., 1981, Theory and Experiment in Gravitational Physics, Cambridge University press, Cambridge Google Scholar