Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T14:48:40.308Z Has data issue: false hasContentIssue false

The Rate of Angular Momentum Loss from Cloud Cores

Published online by Cambridge University Press:  19 July 2016

Takenori Nakano*
Affiliation:
Department of Physics, Kyoto University Sakyo-ku, Kyoto 606, Japan

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The angular momentum is one of the major obstacles to the contraction of interstellar clouds. An efficient process of removing the angular momentum from the cloud is via transport along the magnetic field lines to the ambient medium. When the magnetic field is nearly uniform and the direction of the field lines is parallel to the rotation axis, the spin-down time of the cloud is given by σ/2ρVA, where σ is the column density of the cloud along the field lines, and ρ and VA are the density and the Alfvén velocity, respectively, in the ambient medium (Ebert et al. 1960; Mouschovias & Paleologou 1980). However, this is for a cloud with weak gravity. Because a cloud with strong gravity has contracted dragging the field lines, the ambient field is considerably distorted from uniformity. The spin-down time of such a cloud is shorter than given above (Gillis, Mestel & Paris 1974, 1979).

Type
6. Magnetic Fields in Molecular Clouds, Dark Globules and in the Pre-Stellar and Circumstellar Environment
Copyright
Copyright © Kluwer 1990 

References

Ebert, R., Hoerner, S. von & Temesvary, S., 1960. Die Entstehung von Sternen durch Kondensation diffuser Materie , p. 315, Springer-Verlag, Berlin.Google Scholar
Gillis, J., Mestel, L. & Paris, R. B., 1974. Astrophys. Space Sci. , 27, 167.CrossRefGoogle Scholar
Gillis, J., Mestel, L. & Paris, R. B., 1979. Mon. Not. R. astr. Soc. , 187, 311.Google Scholar
Mestel, L., 1965. Quart. J. R. astr. Soc. , 6, 265.Google Scholar
Mestel, L., 1966. Mon. Not. R. astr. Soc. , 133, 265.Google Scholar
Mestel, L. & Spitzer, L. Jr., 1956. Mon. Not. R. astr. Soc. , 116, 503.Google Scholar
Mouschovias, T. Ch. & Paleologou, E. V., 1980. Astrophys. J. , 237, 877.Google Scholar
Nakano, T., 1979. Publ. astr. Soc. Japan , 31, 697.Google Scholar
Nakano, T., 1981. Prog. theor. Phys. Suppl. , No. 70, p. 54.Google Scholar
Nakano, T., 1982. Publ astr. Soc. Japan , 34, 337.Google Scholar
Nakano, T., 1983. Publ. astr. Soc. Japan , 35, 209.Google Scholar
Nakano, T., 1984. Fund. Cosmic Phys. , 9, 139.Google Scholar
Nakano, T., 1988. Galactic and Extragalactic Star Formation , p. 111, eds Pudritz, R. E. & Fich, M., Kluwer Academic Publishers.Google Scholar
Nakano, T. & Umebayashi, T., 1980. Publ. astr. Soc. Japan , 32, 613.Google Scholar
Nakano, T. & Umebayashi, T., 1986a. Mon. Not. R. astr. Soc. , 218, 663.Google Scholar
Nakano, T. & Umebayashi, T., 1986b. Mon. Not. R. astr. Soc. , 221, 319.Google Scholar
Strittmatter, P. A., 1966. Mon. Not. R. astr. Soc. , 132, 359.Google Scholar