Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-28T20:54:23.476Z Has data issue: false hasContentIssue false

Pulsar Velocities

Published online by Cambridge University Press:  25 May 2016

Matthew Bailes*
Affiliation:
Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, N.S.W. 2121 Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lyne & Lorimer (1994) recently demonstrated that revisions to the pulsar distance scale, coupled with new interferometric measurements of pulsar proper motions and a better treatment of selection effects, indicate that typical pulsar velocities are of the order 450 km s−1. This is between a factor of 2–4 greater than most estimates made over the last decade. This paper looks at the implications of these higher velocities for the various theories about their origin. An extremely simple argument is used to place a fairly rigid upper limit for the rate at which neutron star pairs merge of 10−5 yr−1 in the Galaxy. It appears inevitable that an extremely large fraction of binaries containing neutron stars coalesce during the common-envelope stage of massive binary evolution.

Type
4 Radio Pulsars
Copyright
Copyright © Kluwer 1996 

References

Anderson, B. & Lyne, A.G. 1983, Nat 303, 597.CrossRefGoogle Scholar
Bailes, M. 1989, ApJ 342, 917.Google Scholar
Bailes, M. et al. 1990, MNRAS 247, 322.Google Scholar
Bhattacharya, D. & Van den Heuvel, E.P.J. 1991, Phys. Reports 203, 1.Google Scholar
Bhattacharya, D. et al. 1992, A&A 254, 198.Google Scholar
Camilo, F., Nice, D.J. & Taylor, J.H. 1993, ApJ 412, L37.Google Scholar
Cordes, J.M. 1986, ApJ 311, 183.Google Scholar
Cordes, J.M., Romani, R.W. & Lundgren, S.C. 1993, Nat 362, 133.Google Scholar
Dewey, R.J. & Cordes, J.M. 1987, ApJ 321, 780.Google Scholar
Fomalont, E.B. et al. 1992, MNRAS 258, 497.Google Scholar
Frail, D.A. & Kulkarni, S.R. 1991, Nat 352, 785.Google Scholar
Gott, J.R., Gunn, J.E. & Ostriker, J.P. 1970, ApJ 160, L91.Google Scholar
Gunn, J.E. & Ostriker, J.P. 1970, ApJ 160, 979.Google Scholar
Harrison, E.R. & Tademaru, E. 1975, ApJ 201, 447.Google Scholar
Harrison, P.A. & Lyne, A.G., 1993 MNRAS, 265, 778.CrossRefGoogle Scholar
Harrison, P.A., Lyne, A.G. & Anderson, B. 1993, MNRAS 261, 113.Google Scholar
Lorimer, D.R. 1994, PhD thesis, The University of Manchester.Google Scholar
Lorimer, D.R. et al. 1993, MNRAS 263, 403.CrossRefGoogle Scholar
Lyne, A.G. & Lorimer, D.R. 1994, Nat 369, 127.Google Scholar
Lyne, A.G., Anderson, B. & Salter, M.J. 1982, MNRAS 201, 503.Google Scholar
Lyne, A.G., Manchester, R.N. & Taylor, J.H. 1985, MNRAS 213, 613.Google Scholar
Narayan, R., Piran, T. & Shemi, A. 1991, ApJ 379, L17.Google Scholar
Phinney, E.S. 1991, ApJ 380, L17.Google Scholar
Radhakrishnan, V. 1984, in Millisecond Pulsars , Reynolds, S.P. & Stinebring, D.R. (Eds.), NRAO (Green Bank), p. 130.Google Scholar
Radhakrishnan, V. & Shukre, C.S. 1985, in Supernovae, Their Progenitors and Remnants , Srinivasan, G. & Radhakrishnan, V. (Eds.), Indian Academy of Sciences (Bangalore), p. 155.Google Scholar
Radhakrishnan, V. & Srinivasan, G. 1981, in Proc. 2nd Asian–Pacific Regional Meeting of the IAU , Hidayat, B. & Feast, M.W. (Eds.), Tira Pustaka (Jakarta), p. 423.Google Scholar
Shklovskii, I.S. 1970, Astr. Zh. 46, 715.Google Scholar
Taylor, J.H. & Cordes, J.M. 1993, ApJ 411, 674.Google Scholar
Van den Heuvel, E.P.J. 1992, in X-ray Binaries and Recycled Pulsars , van den Heuvel, E.P.J. & Rappaport, S.A. (Eds.), Kluwer (Dordrecht), p. 233.Google Scholar
Weisberg, J.M., Romani, R.W. & Taylor, J.H. 1989, ApJ 347, 1030.Google Scholar