Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T15:10:49.243Z Has data issue: false hasContentIssue false

Protostellar X-Rays, Jets, and Bipolar Outflows

Published online by Cambridge University Press:  25 May 2016

Frank H. Shu
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720-3411, USA
Hsien Shang
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720-3411, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the theory of x-winds in young stellar objects (YSOs). In particular, we consider how a model where the central star does not corotate with the inner edge of the accretion disk may help to explain the enhanced emission of X-rays from embedded protostars. We argue, however, that the departure from corotation is not large, so a mathematical formulation that treats the long-term average state as steady and axisymmetric represents a useful approximation. Magnetocentrifugally driven x-winds of this description collimate into jets, and their interactions with the surrounding molecular cloud cores of YSOs yield bipolar molecular outflows.

Type
III. Theoretical Models
Copyright
Copyright © Kluwer 1997 

References

Arons, J. 1986, in Plasma Penetration into Magnetospheres, ed. Kylafis, N., Papamastorakis, J., and Ventura, J. (Iraklion: Crete Univ. Press), 115.Google Scholar
Bertout, C. 1989, ARAA 27, 351.Google Scholar
Bertout, C., Basri, G., and Bouvier, J. 1988, ApJ 330, 350.Google Scholar
Biskamp, D. 1993, Nonlinear Magnetohydrodynamics (Cambridge University Press).Google Scholar
Blandford, R.D., and Payne, D.G. 1982 MNRAS 199, 883.CrossRefGoogle Scholar
Camenzind, M. 1990, in Reviews in Modern Astronomy 3, ed. Klare, G. (Berlin: Springer), 259.Google Scholar
Carkner, L. Feigelson, E.D., Koyama, K., Montmerle, T, and Reid, I.N. 1996, ApJ 464, 286.Google Scholar
Chernin, L., and Masson, C. 1995, ApJ 455, 182.Google Scholar
Edwards, S., Strom, S. E., Herbst, W., Attridge, J., Merrill, K. M., Probst, R., and Gatley, I. 1993, AJ 106, 372.Google Scholar
Eichler, D. 1993, ApJ 419, 111.Google Scholar
Feigelson, E.D., Jackson, J.M., Mathieu, R.D., Myers, P.C., and Walter, F.M. 1987, AJ 94, 1251.Google Scholar
Ghosh, P., and Lamb, F.K. 1978, ApJ 223, L83.CrossRefGoogle Scholar
Goodson, A.P., Winglee, R.M., and Böhm, K.-H. 1997, ApJ, submitted.Google Scholar
Grosso, N., Montmerle, T., Feigelson, E.D., Andre, P., Casanova, S., and Gregorio-Hetem, J., Nature, in press.Google Scholar
Hartmann, L., Hewitt, R., and Calvet, N. 1994, ApJ 426, 669.Google Scholar
Hartmann, L., and MacGregor, K.B. 1982, ApJ 259, 180.Google Scholar
Hayashi, M.R., Shibata, K., and Matsumoto, R. 1996, ApJ 468, L37.Google Scholar
Heinemann, M., and Olbert, S. 1978, J. Geophys. Res. 83, 2457.Google Scholar
Heyvaerts, J., and Norman, C. 1989, ApJ 347, 1055.Google Scholar
Jackson, J.D. 1975, Classical Electrodynamics (New York: Wiley).Google Scholar
Johns, C.M., and Basri, G. 1995, ApJ 449, 341.CrossRefGoogle Scholar
Johns-Krull, C.M., and Basri, G. 1997, ApJ 474, 443.Google Scholar
Johns-Krull, C.M., and Hatzes, A.P. 1997, ApJ, in press.Google Scholar
Königl, A. 1989, ApJ 342, 208.Google Scholar
Königl, A. 1991, ApJ 370, L39.Google Scholar
Koyama, K., Ueno, S., Kobayashi, N., and Feigelson, E.D. 1996, PASJ 48, L87.Google Scholar
Li, Z.Y., and Shu, F.H. 1996, ApJ 472, 211.Google Scholar
Linker, J. A., and Mikić, Z. 1994, ApJ 430, 898.Google Scholar
Lovelace, R.V.E, Berk, H.L., and Contopoulos, J. 1991, ApJ 379, 696.Google Scholar
Masson, C., and Chernin, L. 1992, ApJ 387, L47.Google Scholar
Mestel, L. 1968, MNRAS 138, 359.Google Scholar
Meyer, M.R., Calvet, N., and Hillenbrand, L.A. 1997, AJ, in press.Google Scholar
Myers, P.C., Fuller, G.A., Goodman, A.A., and Benson, P.J. 1991, ApJ 376, 561.Google Scholar
Najita, J.R., and Shu, F.H. 1994, ApJ 429, 808.Google Scholar
Ostriker, E.C., and Shu, F.H. 1995, ApJ 447, 813.CrossRefGoogle Scholar
Pudritz, R.E., and Norman, C.A. 1983, ApJ 274, 677.Google Scholar
Sakurai, T. 1985, A&A 152, 121.Google Scholar
Shang, H., Shu, F., Lee, T., and Glassgold, A.E. 1997, in Low Mass Star Formation from Infall to Outflow, Poster Proc. IAU Symp. No. 182, ed. Malbet, F. and Castets, A. (Grenoble: Laboratorie d'Astrophysique), 312.Google Scholar
Shang, H., and Shu, F.H. 1997, in preparation.Google Scholar
Shu, F.H., Lizano, S., Ruden, S., and Najita, J. 1988, ApJ 328, L19.Google Scholar
Shu, F.H., Ruden, S.P., Lada, C.J., and Lizano, S. 1991, ApJ 370, L31.CrossRefGoogle Scholar
Shu, F., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., and Lizano, S. 1994a, ApJ 429, 781.Google Scholar
Shu, F.H., Najita, J., Ruden, S.P., and Lizano, S. 1994b, ApJ 429, 797.Google Scholar
Shu, F.H., Najita, J., Ostriker, E. C., and Shang, H. 1995, ApJ 455, L155.Google Scholar
Shu, F.H., Shang, H., Glassgold, A.E., and Lee, T. 1997, Science, submitted.Google Scholar
Uchida, Y., and Shibata, K. 1985, PASJ 37, 515.Google Scholar
Weber, E.J., and Davis, L. 1967, ApJ 148, 217.Google Scholar