Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:11:26.525Z Has data issue: false hasContentIssue false

Protons associated with centres of solar activity and their propagation in interplanetary magnetic-field regions co-rotating with the Sun

Published online by Cambridge University Press:  14 August 2015

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Pioneer-6 and Pioneer-7 space probes carried charged-particle telescopes which measure, for the first time, both the direction of arrival and differential energy spectra of protons and alpha particles. The intensity changes, directional distributions and energy spectra of proton fluxes associated with solar activity are investigated. The data were obtained in the beginning of the new solar cycle (no. 20), when it is possible to unambiguously associate proton-flux increases with specific solar active regions. The origin, possibly long-term storage, and propagation of these proton fluxes are investigated. It was observed that enhanced 0·6–13 MeV proton fluxes associated with specific active regions were present over heliographic longitude ranges as great as ~ 180°. These enhanced fluxes exhibit definite onsets and cut-offs which appear to be associated with the magnetic-sector boundaries observed by Ness on Pioneer-6. Discrete flare-produced intensity increases extending in energy to more than 50 MeV are observed, superposed on the enhanced flux. These increases displayed short transit times and short rise times. Both the enhanced and flare-produced fluxes propagate along the spiral interplanetary magnetic field from the Western hemisphere of the Sun. From these observations we are led to a model in which the magnetic fields from the active region are spread out over a longitude range of 100–180° in the solar corona. The existence of strong unidirectional anisotropies in the initial phases of flare-proton events implies that little scattering occurs between the Sun and spacecraft. However, the gradual approach to an isotropic flux at late times indicates that the decay phase is controlled by the interplanetary magnetic field.

Type
Part V: Coronal and Interplanetary Structure of an Active Region
Copyright
Copyright © Reidel 1968