Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T09:36:28.488Z Has data issue: false hasContentIssue false

Primordial Nucleosynthesis of 7Li

Published online by Cambridge University Press:  19 July 2016

Douglas K. Duncan
Affiliation:
The Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218 USA
L. M. Hobbs
Affiliation:
Yerkes Observatory, University of Chicago Box 258, Williams Bay, WI 53191 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have observed 23 halo stars with space velocities and metallicities [Fe/H] ≤ −0.6. Twelve of these 23 show the more extreme properties and [Fe/H] ≤ −1.4 and should therefore constitute an especially old, homogeneous subgroup. The principal results for these 12 extreme halo stars and 5 similar stars observed in previous studies are that (1) a single, well defined relation, previously discovered and discussed by Spite and Spite, exists without exception between the atmospheric Li/H ratio and Te, and (2) at Te ≥ 5600 K the average lithium abundance is <Li/H> = 1.2 ± 0.3 × 10−10. The latter value constitutes a lower limit on the 7Li fraction produced in primordial nucleosynthesis and thereby significantly constrains the cosmic ratio of baryons to photons.

Type
Chapter II: The Origin and Abundances of the Light Elements
Copyright
Copyright © Reidel 1987 

References

Bell, R. A. 1984, private communcation.Google Scholar
Boesgaard, A. M., and Steigman, G. 1985, Ann. Rev. Astr. Ap., 23, 319.Google Scholar
Boesgaard, A. M., and Tripicco, M. 1986a, Ap. J. (Letters), 302, L49.CrossRefGoogle Scholar
Boesgaard, A. M., and Tripicco, M. 1986b, Ap. J., 303, 724.Google Scholar
Carney, B. W. 1983, A. J., 88, 623.Google Scholar
Cayrel, R., Caryel de Stroebel, G., Campbell, B., and Dappen, W. 1984, Ap. J., 283, 205.CrossRefGoogle Scholar
D'Antona, F., and Mazzitelli, I. 1984, Astr. Ap., 138, 431.Google Scholar
Däppen, W. 1984, private communication.Google Scholar
Duncan, D. K. 1981, Ap. J., 248, 651.Google Scholar
Duncan, D. K., and Jones, B. F. 1983, Ap. J., 271, 663.Google Scholar
Ferlet, R., and Dennefeld, M. 1983, Astr. Ap., 138, 303.Google Scholar
Hauck, B., and Mermilliod, J. 1979, uvbyß Photoelectric Photometric Catalogue, (Centre de Donnes Stellaires, Strasbourg).Google Scholar
Hobbs, L. M. 1984, Ap. J., 286, 252.Google Scholar
Hobbs, L. M., and Piláchowski, C. 1986, Ap. J. (Letters), 309, Lxxx.Google Scholar
Kurucz, R. L. 1983, private communcation.Google Scholar
Michaud, G., Fontaine, G., and Beaudet, G. 1984, Ap. J., 282, 206.Google Scholar
Nichiporuk, W., and Moore, C. B. 1974, Geochim. Cosmochim. Acta., 38, 1691.Google Scholar
Peterson, R. C., and Carney, B. W. 1979, Ap. J., 231, 762.Google Scholar
Spite, F., and Spite, M. 1982, Astr. Ap., 115, 357 (SS).Google Scholar
Spite, M., Maillard, J. P., and Spite, F. 1984, Astr. Ap., 141, 56 (SMS).Google Scholar
Yang, J., Turner, M. S., Steigman, G., Schramm, D. N., and Olive, K. A. 1984, Ap. J., 281, 493.Google Scholar