Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T21:52:17.821Z Has data issue: false hasContentIssue false

The Primordial 3-Helium Abundance At Last?

Published online by Cambridge University Press:  25 May 2016

T. M. Bania
Affiliation:
Institute for Astrophysical Research, Boston University, Boston, MA
Robert T. Rood
Affiliation:
Department of Astronomy, University of Virginia, Charlottesville, VA
Dana S. Balser
Affiliation:
National Radio Astronomy Observatory, Green Bank, WV

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We summarize the past 17 years of our efforts to determine the cosmic abundance of the 3He isotope. The vast majority of our 3He+ observations were made with the NRAO 140 Foot telescope in Green Bank, WV. The 140 Foot ceased operations in July 1999 so that NRAO could prepare to commission its replacement, the Green Bank Telescope (GBT). Our 3He experiment was the last scientific program at the 140 Foot. It is thus poignant and timely for us to reassess the astrophysical context of our 3He results. Here we argue that the existence of “The 3He Plateau” for our sample of simple sources and recent advances in the understanding of the evolution of solar analog stars together suggest that we can finally estimate the primordial abundance of 3He. Our current best estimate for the primordial abundance is 3He/H = (1.5 ±0.6) × 10−5 (s.e.) by number.

Type
3. Abundances of D, 3He and 4He
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Balser, D. S., Bania, T. M., Rood, R. T., & Wilson, T. L. 1997, ApJ, 483, 320 (BBRW97) CrossRefGoogle Scholar
Balser, D. S., Bania, T. M., Rood, R. T., & Wilson, T. L. 1999, ApJ, 510, 759 (BBRW99) CrossRefGoogle Scholar
Balser, D. S., Rood, R. T., & Bania, T. M. 1999, ApJ, 522, L73 CrossRefGoogle Scholar
Bania, T. M., Balser, D. S., Rood, R. T., Wilson, T. L., & Wilson, T. A. 1997, ApJS, 113, 353 (BBRWW97) CrossRefGoogle Scholar
Charbonnel, C. 1995, ApJ, 453, L41 CrossRefGoogle Scholar
Charbonnel, C. 1998, Space Science Reviews, 84, 199 CrossRefGoogle Scholar
Charbonnel, C., Brown, J. A., Wallerstein, G. 1998a, A&A, 332, 204 Google Scholar
Charbonnel, C., & do Nascimento, J. D. Jr. 1998b, A&A, 336, 915 Google Scholar
Galli, D., Stanghellini, L., Tosi, M., Palla, F. 1997, ApJ, 477, 218 CrossRefGoogle Scholar
Gloeckler, G. 2000, in this volume Google Scholar
Rood, R. T., Bania, T. M., and Wilson, T. L. 1984, ApJ, 280, 629 CrossRefGoogle Scholar
Rood, R. T., Bania, T. M., & Wilson, T. L. 1992, Nature, 355, 618 CrossRefGoogle Scholar
Rood, R. T., Bania, T. M., Balser, D. S., & Wilson, T. L. 1998, Space Science Reviews, 84, 185 CrossRefGoogle Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M. 1976, ApJ, 207, L57 CrossRefGoogle Scholar
Sackmann, I.-J. & Boothroyd, A. I. 1999, ApJ, 510, 217 CrossRefGoogle Scholar
Shaver, P. A., McGee, R. X., Newton, L. M., Danks, A. C., & Pottasch, S. R. 1983, MNRAS, 204, 53 CrossRefGoogle Scholar
Tosi, M. 2000, in this volume Google Scholar