Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:37:42.982Z Has data issue: false hasContentIssue false

The Precambrian Evolution of Terrestrial Life

Published online by Cambridge University Press:  04 August 2017

A. H. Knoll*
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Paleontological evidence indicates that terrestrial life existed at least 3500 Ma ago, and it is quite possible that the earliest cells arose well before that time. The early appearance of life on Earth suggests that under appropriate environmental conditions the probability of chemical evolution proceeding to the point of biogenesis may be reasonably high. Most of biological history has been the history of microorganisms, with tissue-grade plants and animals characterizing only the most recent 15% or so of the fossil record. Intelligent life has occupied only the latest instant in geological time. The time table of terrestrial evolution is governed more by the particulars of our planet's physical and biological history than by some universal tempo of evolutionary change. One aspect of terrestrial life that is likely to be universal is the organization of populations into efficient biogeochemical systems.

Type
Section IV. Universal Aspects of Biological Evolution
Copyright
Copyright © Reidel 1985 

References

Awramik, S. M., Schopf, J. W., and Walter, M. R., 1983. ‘Filamentous fossil bacteria from the Archean of Western Australia’ Precambrian Res. 20: 357374.Google Scholar
Cameron, E. M. 1982. ‘Sulphate and sulphate reduction in early Precambrian oceans’ Nature 296: 145148.Google Scholar
Cameron, E. M. 1983. ‘The start of sulfur oxidation in continental environments about 2.2 × 109 years ago’ Science 221: 549551.Google Scholar
Carter, B. 1983. ‘The anthropic principle and its implications for biological evolution’ Phil. Trans. R. Soc. Lond. A310: 347363.Google Scholar
Cloud, P. E. 1983. ‘Cosmobiology’ Quart. Rev. Biol. 58: 5760.Google Scholar
Cohen, M. 1981. ‘Stellar influences on the emergence of intelligent life’ Pp. 115118. In: Billingham, J., ed., Life in the Universe. MIT Press; Cambridge, Massachusetts.Google Scholar
Fox, G. E., et. al. 1980. ‘The phylogeny of prokaryotes’ Science 209: 457463.Google Scholar
Gest, H. 1980. ‘The evolution of biological energy-transducing systems’ FEMS Microbiol. Lett. 7: 7377.Google Scholar
Glaessner, M. F. 1979. ‘Precambrian’ Pp. A79A118. In: Robison, R. A., and Teichert, C., eds., Treatise on Invertebrate Paleontology, Part A: Introduction. Geol. Soc. Amer. and Univ. Kansas Press; Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Gray, M. W., and Doolittle, W. F., 1982. ‘Has the endosymbiont hypothesis been proven?’ Microbiol. Rev. 46: 142.Google Scholar
Hayes, J. M. 1983. ‘Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. Pp. 292301. In: Schopf, J. W., ed., Earth's Earliest Biosphere, Its Origin and Evolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Hofmann, H. J., and Aitken, J. D., 1979. ‘Precambrian biota from the Little Dal Group, Mackenzie Mountains, northwestern Canada’ Can. J. Earth Sci. 16: 150166.Google Scholar
Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Horodyski, R. J. 1980. ‘Middle Proterozoic shale-facies microbiota from the lower Belt Supergroup, Little Belt Mountains, Montana’ J. Paleontol. 54: 649663.Google Scholar
Huang, S. S. 1959. ‘The occurrence of life in the universe’ Amer. Sci. 47: 397402.Google Scholar
Knoll, A. H. 1979. ‘Archean photoautotrophy: some alternatives and limits’ Origins of Life 9: 313327.Google Scholar
Knoll, A. H. 1983. ‘Biological interactions and Precambrian eukaryotes’ Pp. 251283. In: Tevesz, M. J. S., and McCall, P. L., eds., Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Publ. Corp.; New York.Google Scholar
Knoll, A. H. 1984. ‘The Archean/Proterozoic transition: a sedimentary and paleobiological perspective’ Pp. 221242. In: Holland, H. D., Trendall, A. F., eds., Patterns of Change in Earth Evolution. Dahlem Konferenzen. Springer Verlag; Berlin.Google Scholar
Knoll, A. H. 1985. ‘Patterns of Evolution in the Precambrian Era’ Paleobiology. In Press.Google Scholar
Knoll, A. H., and Barghoorn, E. S., 1977. ‘Archean microfossils showing cell division from the Swaziland System of South Africa’ Science 198: 396398.CrossRefGoogle ScholarPubMed
Maddox, J. 1984. ‘New twist for anthropic principle’ Nature 307: 409.Google Scholar
Margulis, L. 1981. Symbiosis and Cell Evolution. W. H. Freeman and Co.; San Francisco.Google Scholar
Muir, M. D., and Grant, P. R., 1976. ‘Micropaleontological evidence from the Onverwacht Group, South Africa’ Pp. 595604. In: Windley, B. F., ed., The Early History of the Earth. Wiley; London.Google Scholar
Schidlowski, M. 1983. ‘Evolution of photoautotrophy and early atmospheric oxygen levels’ Precambrian Res. 20: 319335.CrossRefGoogle Scholar
Schidlowski, M., Hayes, J. M., and Kaplan, I. R., 1983. ‘Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen’ Pp. 149186. In: Schopf, J. W., ed., Earth's Earliest Biosphere, Its Origin and Evolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Schopf, J. W., ed. 1983. Earth's Earliest Biosphere, Its Origin and Evolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Simpson, G. G. 1964. ‘The non-prevalence of humanoids’ Science 143: 769775.Google Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. W. H. Freeman and Co.; San Francisco.Google Scholar
Vidal, G., and Knoll, A. H., 1983. ‘Proterozoic plankton’ Geol. Soc. Amer. Mem. 161: 265277.Google Scholar
Walsh, M. M., and Lowe, D. R., 1983. ‘Filamentous microfossils from the 3.1–3.5 billion-year-old Swaziland Supergroup, Barberton Mountain Land, South Africa’ Lunar and Planetary Sci. XIV, Abstr. Pp. 814815.Google Scholar
Walter, M. R., 1983. ‘Archean stromatolites: evidence of the Earth's earliest benthos’ Pp. 187213. In: Schopf, J. W., ed., Earth's Earliest Biosphere, Its Origin and Evolution. Princeton Univ. Press; Princeton, New Jersey.Google Scholar
Woese, C. R. 1983. ‘The primary lines of descent and the universal ancestor’ Pp. 209233. In: Bendall, D. S., ed., Evolution from Molecules to Men. Cambridge Univ. Press; Cambridge, U.K. Google Scholar