Published online by Cambridge University Press: 19 July 2016
The general understanding of the continuum emission from AGN has changed from the picture where nonthermal processes were responsible for all of the emission. The current body of observation indicates that there are two types of objects, one being the blazar class (or blazar component), where nearly all of the emission is nonthermal, due primarily to synchrotron and inverse Compton emission. Variability studies indicate that the emitting region decreases with size from the radio through the X-ray region, where the size of the X-ray region is of order a light hour. More than two dozen of these radio-loud AGNs have been detected at GeV energies (one source at TeV energies), for which the radiation mechanism may be inverse Compton mechanism.
In the other class, the radio-quiet AGN (component), the emission is almost entirely thermal, with radiation from dust dominating the near infrared to submillimeter region. The optical to soft X-ray emission is often ascribed to black body emission from an opaque accretion disk, but variability studies may not be consistent with expectations. Another attractive model has free-free emission being responsible for the optical to soft X-ray emission. The highest frequencies at which these AGN are detected is the MeV range, and these data should help to determine if this emission is produced in a scattering atmosphere, such as that around an accretion disk, or by another model involving an opaque pair plasma.