Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T19:32:48.989Z Has data issue: false hasContentIssue false

Orbital Motion and Magnetic Activity in Close Binaries and Planetary Systems

Published online by Cambridge University Press:  26 May 2016

Marcello Rodonò
Affiliation:
Dipartimento di Fisica e Astronomia, Università degli Studi, Via S. Sofia, 78, 95123 Catania, Istituto Nazionale di Astrofisica (INAF), Viale del Parco Mellini, 84, 00136 Roma
Antonino F. Lanza
Affiliation:
INAF - Osservatorio Astrofisico di Catania, Via S. Sofia, 78, 95123 Catania, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The connection between orbital period variation and magnetic activity cyclic behaviour in close binaries with late-type components is addressed by discussing recent observational studies of Algols, RS CVn's, W UMa's and CVs. A theoretical model based on the Applegate's mechanism seems capable of explaining the observed orbital period modulation in terms of cyclic changes of a gravitational quadrupole moment induced by a magnetic activity cycle affecting one of the binary components. In such a case, the study of orbital period modulations offers a promising tool to investigate hydromagnetic dynamos operating in the interior of active stars, in particular, to address the fundamental question of the interaction between rotation and magnetic fields in nonlinear dynamo regimes. Moreover, interesting applications to planetary systems with a magnetically active central star are discussed.

Type
Part 8: Stellar Analogues for Interaction and Evolution
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Amado, P. J., Cutispoto, G., Lanza, A. F., & Rodonò, M., 2001, in ASP Conf. Ser. Vol. 223, The Eleventh Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, Eds., Garcia-Lopez, R. J., Rebolo, R., Zapaterio Osorio, M. R. (San Francisco: ASP), 895.Google Scholar
Anders, G. J., Coates, D. W., Thompson, K., & Innis, J. L. 1999, MNRAS, 310, 377.Google Scholar
Applegate, J. H. 1992, ApJ, 385, 621.CrossRefGoogle Scholar
Applegate, J. H., & Patterson, J. 1987, ApJ, 322, L99.Google Scholar
Baliunas, S. L., Nesme-Ribes, E., Sokoloff, D., & Soon, W. H. 1996, ApJ, 460, 848.Google Scholar
Brandenburg, A., Moss, D., Tuominen, I. 1992, A&A, 265, 328.Google Scholar
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699.Google Scholar
Cakirli, O., Ibanoglu, C., Djurasevic, G., Erkapic, S., Evren, S., & Tas, G. 2003, A&A, 405, 733.Google Scholar
Collier Cameron, A., & Donati, J.-F., 2002, MNRAS, 329, L23.CrossRefGoogle Scholar
DeCampli, W. M., & Baliunas, S. L. 1979, ApJ, 230, 815.CrossRefGoogle Scholar
Donati, J.-F. 1999, MNRAS, 302, 457.Google Scholar
Eaton, J. A., Henry, G. W., & Fekel, F. C., 1996, ApJ, 462, 888.Google Scholar
Hall, D. S. 1989, Space Sci. Rev., 50, 219.Google Scholar
Hall, D. S. 1990, in Active Close Binaries, Ed. Ibanoglu, C. (Dordrecht: Kluwer), 95.CrossRefGoogle Scholar
Hall, D. S. 1991, ApJ, 380, L85.Google Scholar
Hall, D. S., & Kreiner, J. M. 1980, AcA, 30, 387.Google Scholar
Henry, G. W., Eaton, J. A., Hamer, J., & Hall, D. S. 1995, ApJS, 97, 513.CrossRefGoogle Scholar
Holzwarth, V., & Schüssler, M. 2003a, A&A, 405, 291.Google Scholar
Holzwarth, V., & Schüssler, M. 2003b, A&A, 405, 303.Google Scholar
Konacki, M., Torres, G., Jha, S., & Sasselov, D. D. 2003, Nature, 421, 507.CrossRefGoogle Scholar
Kreiner, J. M., Kim, C.-H., & Nha, I.-S. 2001, An Atlas of O-C Diagram of Eclipsing Binary Stars, http://www.as.ap.krakow.pl.Google Scholar
Lanza, A. F., Catalano, S., Cutispoto, G., Pagano, I., & Rodonò, M. 1998a, A&A, 332, 541.Google Scholar
Lanza, A. F., Catalano, S., Rodonò, M., Ibanoglu, C., Tas, G., Cakirli, O., & Devlen, A. 2002, A&A, 386, 583.Google Scholar
Lanza, A. F., & Rodonò, M. 1999, A&A, 349, 887.Google Scholar
Lanza, A. F., & Rodonò, M. 2002a, A&A, 390, 167.Google Scholar
Lanza, A. F., & Rodonò, M. 2002b, Astron. Nach., 323, 424.Google Scholar
Lanza, A. F., Rodonò, M., Mazzola, L., & Messina, S. 2001, A&A, 376, 1011.Google Scholar
Lanza, A. F., Rodonò, M., & Rosner, R. 1998b, MNRAS, 296, 893.CrossRefGoogle Scholar
Lanza, A. F., Rodonò, M., & Rosner, R. 2000, MNRAS, 314, 398.Google Scholar
Lanza, A. F., Rodonò, M., Pagano, I., Barge, P., & Llebaria, A. 2003, A&A, 403, 1135.Google Scholar
Marc, G. W., Butler, R. P., Fischer, D., Vogt, S. S., Lissauer, J. J., & Rivera, E. J. 2001, ApJ, 556, 296.Google Scholar
Marsch, T. R., & Pringle, J. E. 1990, ApJ, 365, 677.CrossRefGoogle Scholar
Matese, J. J., & Whitmire, D. P. 1983, A&A, 117, L7.Google Scholar
Miralda-Escudé, J. 2002, ApJ, 564, 1019.Google Scholar
Moffatt, H. K., 1978, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge: Cambridge Univ. Press).Google Scholar
Murray, C. D., & Dermott, S. F. 1999, Solar System Dynamics (Cambridge: Cambridge Univ. Press).Google Scholar
Ness, J-U., & Schmitt, J. H. M. M., Burwitz, V., Mewe, R., & Predehl, P. 2002, A&A, 387, 1032.Google Scholar
Richards, M. T., & Albright, G. E. 1999, ApJS, 123, 547.Google Scholar
Rodonò, M., Lanza, A. F., & Catalano, S. 1995, A&A, 301, 75.Google Scholar
Rüdiger, G. 1989, Differential Rotation and Stellar Convection: Sun and solar-type stars (New York: Gordon & Breach).Google Scholar
Schmitt, J. H. M. M., & Favata, F. 1999, Nature, 401, 44.Google Scholar
Simon, V. 1999, A&AS, 134, 1.Google Scholar
Söderhjelm, S. 1980, A&A, 89, 100.Google Scholar
Spruit, H. C. 1982, A&A, 108, 348.Google Scholar
Spruit, H. C., & Weiss, A. 1986, A&A, 166, 167.Google Scholar
Warner, B. 1988, Nature, 336, 129.Google Scholar
Zahn, J.-P. 1989, A&A, 220, 112.Google Scholar
Zavala, R. T., McNamara, B. J., Harrison, T. E., Galvan, E., Galvan, J., Jarvis, T., & et al. 2002, AJ, 123, 450.Google Scholar