Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T16:50:55.519Z Has data issue: false hasContentIssue false

On Theories of Solar Rotation

Published online by Cambridge University Press:  14 August 2015

B. R. Durney*
Affiliation:
National Center for Atmospheric Research∗ Boulder, Colo. 80303, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main theories of solar rotation are critically reviewed.

The interaction of large-scale convection with rotation gives rise to a transport of angular momentum towards the equator and therefore to differential rotation with equatorial acceleration. (Large-scale convection is defined as follows: in a highly turbulent fluid, the small-scale turbulence acts as a viscosity and organizes fluid motions on a much larger scale.) This transport of angular momentum towards the equator arises because of the highly non-axisymmetric character of the large-scale convective motions in the presence of rotation. These motions tend to be concentrated near the equator. It is not surprising, therefore, that for magnitudes of large-scale convection which are needed to generate the observed solar differential rotation, large and unobserved pole-equator differences in flux appear in the Boussinesq approximation.

It is important, therefore, to take the variations in density into account. Studies of large-scale convection in a compressible rotating medium are still in a very early stage; these studies suggest, however, that the surface layers must indeed rotate differentially.

The interaction of rotation with convection appears to be especially efficient in generating a pole-equator difference in flux, Such a drives meridional motions, and the action of Coriolis forces on these motions gives rise to differential rotation. In the ‘large-viscosity’ approximation the problem separates; the meridional motions can be determined first (from the radial and latitudinal equations of motions, and the energy equation) and the angular velocity can be determined next from the azimuthal equation of motion. Since very little is known about compressible large-scale convection, it has been assumed in the development of this theory that the stabilizing effect of rotation on turbulent convection depends on the polar angle θ and on depth. The solution for the angular velocity in the large viscosity approximation gives a differential rotation that varies slowly with depth. As a consequence, the large viscosity approximation is not valid over most of the convection zone, the Coriolis term being larger than the viscous term; a thin layer at the top excepted. (It appears, however, that if the angular velocity, ω, is a slowly varying function of depth and the azimuthal stresses vanish at both ends of the convection zone, then the general behavior of ω will be very much like that predicted by the large viscosity approximation.)

The stabilizing effect of rotation on turbulent convection is neglected; if differential rotation is significant over the entire convection zone, and if the meridional and large-scale convective velocities are not too large, then in the radial and latitudinal equations of motion, the main balance of forces is between pressure gradients, buoyancy and Coriolis forces. If rotation is not constant along cylinders, then the differential rotation gives rise to latitudinal variations in the convective flux which are proportional to (where T is the temperature and g is gravity). In the lower part of the convection zone, is of the order of the superadiabatic gradient itself. Therefore large pole-equator differences in flux, will be present unless the angular velocity is constant along cylinders. The meridional velocities associated with this rotation law are not small, however, and could generate a significant It could well be that large s can be avoided only if rotation is uniform in the lower part of the convection zone. (To be certain of these results, however, it is important to estimate the magnitude of the stabilizing effect of rotation on turbulent convection.)

Turbulent convection is driven by the buoyancy force which thus introduces a preferred direction: gravity. In consequence, the turbulence in the sun should be anisotropic and if this is the case the convection zone cannot rotate uniformly. The degree of anisotropy is not known and must be determined from the observed solar differential rotation. The anisotropy is such that the horizontal exchange of momentum is larger than the vertical.

The normal mode of vibrations and the inner rotation of the Sun are briefly discussed.

Type
Part 2: Solar Convection and Differential Rotation
Copyright
Copyright © Reidel 1976 

References

Abt, H. and Hunter, J.: 1962, Astrophys. J. 136, 381.CrossRefGoogle Scholar
Alfonso-Faus, A.: 1967, J. Geophys. Res. 72, 5576.CrossRefGoogle Scholar
Altrock, R. C. and Canfield, R. C.: 1972a, Astrophys. J. 171, L71.CrossRefGoogle Scholar
Altrock, R. C. and Canfield, R. C.: 1972b, Solar Phys. 23, 257.CrossRefGoogle Scholar
Antonucci, E. and Svalgaard, L.: 1974, Solar Phys. 34, 3.CrossRefGoogle Scholar
Appenzeller, I. and Schröter, E. H.: 1967, Astrophys. J. 147, 1100.Google Scholar
Appenzeller, I. and Schröter, E. H.: 1968, Solar Phys. 4, 131.CrossRefGoogle Scholar
Baker, N. and Temesvary, S.: 1966, Tables of Convective Stellar Envelope Models , 2nd edn., Goddard Institute for Space Studies, New York.Google Scholar
Beckers, J. M. and Morrison, R. A.: 1970, Solar Phys. 14, 280.Google Scholar
Belvedere, G. and Paterno, L.: 1976, Solar Phys. (in press).Google Scholar
Benton, E. R. and Clark, A.: 1974, Ann. Rev. Fluid Mech. 6, 257.Google Scholar
Biermann, L.: 1951, Z. Astrophys. 28, 304.Google Scholar
Böhm, K. H.: 1963, Astrophys. J. 137, 881.Google Scholar
Boussinesq, J.: 1877, ‘Essai sur la theorie des eaux courantes’, Mém. prés. par div. savants á l'Acad. Sci., Paris 23, No. 1, p. 1.Google Scholar
Boussinesq, J.: 1897, Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes á grande section, I–II , Gauthier-Villars, Paris.Google Scholar
Bumba, V., Howard, R., and Smith, S. F.: 1964, Carnegie Inst. of Washington Year Book 63, 6.Google Scholar
Bumba, V.: 1967, Rendiconti della Scuola Internazionale di Fisica “E. Fermi,” 39 Corso , 77.Google Scholar
Bumba, V. and Obridko, V. N.: 1969, Solar Phys. 6, 104.CrossRefGoogle Scholar
Bumba, V. and Obridko, V. N.: 1970, Solar Phys. 14, 80.Google Scholar
Busse, F. H.: 1970, Astrophys. J. 159, 629.Google Scholar
Busse, F. H.: 1973, Astron. Astrophys. 28, 27.Google Scholar
Caccin, B., Falciani, R., Moschi, G., and Rigutti, M.: 1970, Solar Phys. 13, 33.Google Scholar
Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability , Clarendon Press, Oxford.Google Scholar
Cocke, W. J.: 1967, Astrophys. J. 150, 1041.Google Scholar
Condon, E. U. and Shortley, G. H.: 1951, The Theory of Atomic Spectra , Cambridge University Press, Cambridge.Google Scholar
Conti, P. S.: 1968, Astrophys. J. 152, 657.CrossRefGoogle Scholar
Cowling, T. G.: 1951, Astrophys. J. 144, 272.Google Scholar
Deinzer, W. and Stix, M.: 1971, Astron. Astrophys. 12, 111.Google Scholar
Deubner, F. L.: 1972, Solar Phys. 22, 263.CrossRefGoogle Scholar
Dicke, R. H.: 1964, Nature 202, 432.CrossRefGoogle Scholar
Dicke, R. H.: 1970a, IAU Colloq. 4, 289.Google Scholar
Dicke, R. H.: 1970b, Ann. Rev. Astron. Astrophys. (ed. by Goldenberg, L.), Annual Reviews, California, p. 297.CrossRefGoogle Scholar
Dicke, R. H.: 1971, Phys. Rev. Letters , 27, 210.Google Scholar
Dicke, R. H.: 1972, Astrophys. J. 171, 331.Google Scholar
Dicke, R. H. and Goldenberg, H. M.: 1967, Phys. Rev. Letters 18, 313.CrossRefGoogle Scholar
Dittmer, P. H.: 1975, Solar Phys. 41, 1975.Google Scholar
Dupree, A. K. and Henze, W.: 1972, Solar Phys. 27, 271.CrossRefGoogle Scholar
Durney, B. R.: 1968a, J. Atmospheric Sci. 25, 372.Google Scholar
Durney, B. R.: 1968b, J. Atmospheric Sci. 25, 771.Google Scholar
Durney, B. R.: 1970, Astrophys. J. 161, 1115.CrossRefGoogle Scholar
Durney, B. R.: 1971, Astrophys. J. 163, 353.Google Scholar
Durney, B. R.: 1972a, Solar Phys. 26, 3.CrossRefGoogle Scholar
Durney, B. R.: 1972b, Solar Wind , Proc. of the Asilomar Conf., p. 282 (ed. by Sonnet, C. P., Coleman, P. J. Jr., and Wilcox, J. M.), NASA, Washington.Google Scholar
Durney, B. R.: 1974a, Astrophys. J. 190, 211.Google Scholar
Durney, B. R.: 1974b, Solar Phys. 38, 301.Google Scholar
Durney, B. R.: 1976, Astrophys. J. 204, 589.CrossRefGoogle Scholar
Durney, B. R. and Roxburgh, I. W.: 1971, Solar Phys. 16, 3.Google Scholar
Durney, B. R. and Skumanich, A.: 1968, Astrophys. J. 152, 255.CrossRefGoogle Scholar
Falciani, R., Rigatti, M., and Roberti, G.: 1974, Solar Phys. 35, 277.Google Scholar
Fossat, E.: 1975, Thesis, Univ. of Nice (unpublished).Google Scholar
Fossat, E. and Ricort, G.: 1973, Solar Phys. 28, 311.Google Scholar
Fricke, K.: 1968, Z. Astrophys. 68, 317.Google Scholar
Fricke, K. and Kippenhahn, R.: 1970, Ann. Rev. Astron. Astrophys. 10, 45.CrossRefGoogle Scholar
Gierasch, P.: 1974, Astrophys. J. 190, 199.Google Scholar
Gilman, P. A.: 1972, Solar Phys. 27, 3.Google Scholar
Gilman, P. A.: 1975, J. Atmospheric Sci. 32, 1331.2.0.CO;2>CrossRefGoogle Scholar
Goldreich, P. and Schubert, G.: 1967, Astrophys. J. 150, 571.CrossRefGoogle Scholar
Grevesse, N.: 1968, Solar Phys. 5, 159.Google Scholar
Hansen, R. T., Hansen, S. F., and Loomis, H. G.: 1969, Solar Phys. 10, 135.Google Scholar
Hauge, Ö. and Engvold, O.: 1968, Astrophys. Letters , 2, 235.Google Scholar
Heard, W. B.: 1973, Astrophys. J. 186, 1065.CrossRefGoogle Scholar
Heard, W. B. and Veronis, G.: 1973 (unpublished).Google Scholar
Henze, W. and Dupree, A. K.: 1973, Solar Phys. 33, 425.Google Scholar
Herring, J. R.: 1963, J. Atmospheric Sci. 20, 325.2.0.CO;2>CrossRefGoogle Scholar
Herring, J. R.: 1964, J. Atmospheric Sci. 21, 277.Google Scholar
Herring, J. R.: 1969, Phys. Fluids 12, 39.Google Scholar
Hill, H. A. and Stebbins, R. T.: 1975a, Ann. N.Y. Acad. Sci. 262, 472.Google Scholar
Hill, H. A. and Stebbins, R. T.: 1975b, Astrophys. J. 200, 484.Google Scholar
Hill, H. A., Clayton, P. D., Patz, D. L., Healy, A. W., Stebbins, R. T., Oleson, J. R., and Zanoni, C. A.: 1974, Phys. Rev. Letters , 33, 1497.Google Scholar
Hill, H. A., McCullen, J. D., Brown, T. M., and Stebbins, R. T.: 1975 (unpublished).Google Scholar
Hill, H. A., Stebbins, R. T., and Brown, T. M.: 1976, Proc. of the Fifth Int. Conf. on Atomic Masses and Fundamental Constr., Paris, France (in press).Google Scholar
Howard, L. N., Moore, D. W., and Spiegel, E. A.: 1967, Nature 214, 1297.CrossRefGoogle Scholar
Howard, R.: 1971, Solar Phys. 16, 21.Google Scholar
Howard, R. and Harvey, J.: 1970, Solar Phys. 12, 23.Google Scholar
Howard, R. and Yoshimura, H.: 1976, this volume, p. 19.CrossRefGoogle Scholar
Iroshnikov, R. S.: 1969, Astron. Zh. 46, 97 (translated in Soviet Astron. 13 (1969), 73).Google Scholar
Kaufman, P.: 1972, Solar Phys. 23, 178.Google Scholar
Kippenhahn, R.: 1963, Astrophys. J. 137, 664.Google Scholar
Köhler, H.: 1970, Solar Phys. 13, 3.Google Scholar
Köhler, H.: 1973, Astron. Astrophys. 25, 467.Google Scholar
Kobrin, M. M. and Korshunov, A. I.: 1972, Solar Phys. 25, 1972.Google Scholar
Kraft, R.: 1967, Astrophys. J. 150, 551.Google Scholar
Kraft, R.: 1969, in Stellar Astronomy , vol. 2 (ed. by Chiu, H. Y., Warasila, R. and Remo, J.), Gordon and Breach, New York.Google Scholar
Kraft, R.: 1970, in Otto Struve Memorial Volume (ed by Herbig, G.), p. 385.Google Scholar
Ledoux, P., Schwarzschild, M., and Spiegel, E. A.: Astrophys. J. 133, 184.Google Scholar
Leighton, R. B.: 1966 (unpublished).Google Scholar
Leighton, R. B.: 1969, Astrophys. J. 156, 1.Google Scholar
Lerche, I. and Parker, E. N.: 1972, Astrophys. J. 176, 213.Google Scholar
Livingston, W. C.: 1969, Solar Phys. 9, 448.Google Scholar
McIntosh, P. S.: 1975, Report UAG 40 (H α Synoptic Charts of Solar Activity for the Period of Skylab Observations. March 1973–March 1974).Google Scholar
Mattig, W. and Nesis, A.: 1974, Solar Phys. 36, 3.Google Scholar
Mehltretter, J. P.: 1971, Solar Phys. 16, 253.Google Scholar
Modisette, J. L.: 1967, J. Geophys. Res. 72, 1521.Google Scholar
Ness, N. F. and Wilcox, J. M.: 1966, Astrophys. J. 143, 23.Google Scholar
Newton, H. W. and Nunn, M. L.: 1951, Monthly Notices Roy. Astron. Soc. 111, 413.Google Scholar
Noyes, R. W., Ayres, T. R., and Hall, D. N. B.: 1973, Solar Phys. 28, 343.Google Scholar
Osaki, Y.: 1970, Monthly Notices Roy. Astron. Soc. 131, 407.Google Scholar
Pai, S. 1956, Viscous Flow Theory, Vol. 1, Laminar Flow , Van Nostrand, New York, pp. 3940.Google Scholar
Parker, E. N.: 1955, Astrophys. J. 122, 293.Google Scholar
Parker, E. N.: 1971, Astrophys. J. 164, 491.Google Scholar
Parker, E. N.: 1973a, Astrophys. J. 186, 643.Google Scholar
Parker, E. N.: 1973b, Astrophys. J. 186, 665.Google Scholar
Parker, E. N.: 1975, Astrophys. J. 198, 205.Google Scholar
Richardson, R. S. and Schwarzschild, M.: 1953, Academia Lincei, Conv. 11, p. 228.Google Scholar
Roberts, P. H.: 1974, Solar Wind Three , p. 231 (ed. by Russell, C. T.), published by Inst. of Geophys. and Planetary Phys., UCLA.Google Scholar
Roberts, P. H. and Stix, M.: 1972, Astron Astrophys. 18, 453.Google Scholar
Ross, J. E. and Aller, L. H.: 1974, Solar Phys. 36, 11.Google Scholar
Roxburgh, I. W.: 1964, Icarus 3, 92.Google Scholar
Roxburgh, I. W.: 1970, IAU Colloq. 4.Google Scholar
Roxburgh, I. W.: 1974, Astrophys. Space Sci. 27, 419.Google Scholar
Rüdiger, G.: 1974, Astron. Nachr. 295, 229.Google Scholar
Rüdiger, G.: 1976, Solar Phys. (in press).Google Scholar
Rutten, R. J.: 1973, Solar Phys. 28, 347.Google Scholar
Sakurai, T.: 1966, Publ. Astron. Soc. Japan 18, 174.Google Scholar
Sakurai, T.: 1975, Monthly Notices Roy. Astron. Soc. 171, 35.Google Scholar
Schatzman, E.: 1962, Ann. Astrophys. 25, 18.Google Scholar
Shaviv, G. and Salpeter, E. E.: 1973, Astrophys. J. 184, 191.Google Scholar
Simon, G. W. and Noyes, R. W.: 1972, Solar Phys. 26, 8.Google Scholar
Simon, G. W. and Weiss, N. O.: 1968, Z. Astrophys. 69, 435.Google Scholar
Skumanich, A.: 1955, Astrophys. J. 121, 408.Google Scholar
Skumanich, A.: 1972, Astrophys. J. 171, 565.Google Scholar
Spiegel, E. A.: 1964, Astrophys. J. 139, 959.Google Scholar
Spiegel, E. A.: 1965, Astrophys. J. 141, 1068.Google Scholar
Spiegel, E. A.: 1968, in Highlights of Astronomy (ed. by Perek, L.), D. Reidel Publishing Co., Dordrecht.Google Scholar
Spiegel, E. A.: 1971, Ann. Rev. Astron. Astrophys. 9, 330 (ed. by Goldberg, L.).Google Scholar
Spiegel, E. A. and Zahn, J. P.: 1970, Comments Astrophys. Space Phys. 2, 178.Google Scholar
Starr, V. P. and Gilman, P.: 1965, Astrophys. J. 141, 1119.Google Scholar
Steenbeck, M. and Krause, F.: 1969, Astron. Nachr. 291, 49.Google Scholar
Stenflo, J. O.: Solar Phys. 36, 495.Google Scholar
Stix, M.: 1974, Astron. Astrophys. 37, 121.Google Scholar
Stix, M.: 1976a, this volume, p. 367.Google Scholar
Stix, M.: 1976b (submitted to Astron. Astrophys.).Google Scholar
Strittmatter, P. A.: 1969, Ann. Rev. Astron. Astrophys. 7, 665.Google Scholar
Švestka, Z.: 1968a, Solar Phys. 4, 18.Google Scholar
Švestka, Z.: IAU Symp. 35, 287.Google Scholar
Tuominen, J.: 1955, Z. Astrophys. 27, 145.Google Scholar
Unno, W.: 1961, Publ. Astron. Soc. Japan 13, 276.Google Scholar
Vandakurov, Yu. V.: 1975a, Solar Phys. 40, 3.Google Scholar
Vandakurov, Yu. V.: 1975b, Solar Phys. (in press).Google Scholar
Veronis, G., 1966, Tellus 18, 67.Google Scholar
Vickers, G. T.: 1971, Astrophys. J. 163, 363.Google Scholar
Wallerstein, G. and Conti, P. S.: 1969, Ann. Rev. Astron. Astrophys. 7, 99.Google Scholar
Wallerstein, G., Herbig, G. H., and Conti, P. S.: 1965, Astrophys. J. 141, 610.Google Scholar
Ward, F.: 1965, Astrophys. J. 141, 534.Google Scholar
Weber, E. J. and Davis, L. Jr.: 1967, Astrophys. J. 148, 217.Google Scholar
Weiss, N. O.: 1964, Monthly Notices Roy. Astron. Soc. 128, 225.Google Scholar
Weiss, N. O.: 1965, Observatory 85, 37.Google Scholar
Wilcox, J. M. and Howard, R.: 1968, Solar Phys. 5, 564.Google Scholar
Wilcox, J. M. and Howard, R.: 1970, Solar Phys. 13, 251.Google Scholar
Wilcox, J. M. and Ness, N. F.: 1965, J. Geophys. Res. 70, 5793.Google Scholar
Wilcox, J. M. and Ness, N. F.: 1967, Solar Phys. 1, 437.Google Scholar
Wilcox, J. M., Schatten, K. H., Tanenbaum, A. S., and Howard, R.: 1970a, Solar Phys. 14, 225.Google Scholar
Wilcox, J. M., Schatten, K. H., Tanenbaum, A. S., and Howard, R.: 1970b, Solar Phys. 14, 255.Google Scholar
Wilson, O. C.: 1966a, Astrophys. J. 144, 695.Google Scholar
Wilson, O. C.: 1966b, Science 151, 1487.Google Scholar
Wolff, C. L.: 1974a, Astrophys. J. 193, 721.Google Scholar
Wolff, C. L.: 1974b, Astrophys. J. 194, 489.Google Scholar
Wolff, C. L.: 1975, Solar Phys. 41, 297.Google Scholar
Yoshimura, H.: 1971, Solar Phys. 18, 417.Google Scholar
Yoshimura, H.: 1972a, Solar Phys. 22, 20.Google Scholar
Yoshimura, H.: 1972b, Astrophys. J. 178, 863.Google Scholar
Yoshimura, H.: 1975a, Astrophys. J. Suppl. 29, 467.Google Scholar
Yoshimura, H.: 1975b, Astrophys. J. 201, 740.Google Scholar
Yoshimura, H.: 1976a, this volume (Discussion).Google Scholar
Yoshimura, H.: 1976b (unpublished).Google Scholar
Yoshimura, H. and Kato, S.: 1971, Publ. Astron. Soc. Japan 23, 57.Google Scholar
Young, R.: 1974, J. Fluid Mech. 63, 695.Google Scholar
Zahn, J. P. 1974, IAU 59, 185.Google Scholar
Zahn, J. P.: 1975, Coll. Internal d'Astr. de Liege (in press).Google Scholar