Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T10:03:11.250Z Has data issue: false hasContentIssue false

New Determination Method of Primordial Li Abundance

Published online by Cambridge University Press:  25 May 2016

T. Kajino
Affiliation:
National Astronomical Observatory The Graduate University for Advanced Studies Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo Bunkyo-ku, Tokyo 113-0033, Japan
T.-K. Suzuki
Affiliation:
National Astronomical Observatory The Graduate University for Advanced Studies Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo Bunkyo-ku, Tokyo 113-0033, Japan
S. Kawanomoto
Affiliation:
National Astronomical Observatory The Graduate University for Advanced Studies Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo Bunkyo-ku, Tokyo 113-0033, Japan
H. Ando
Affiliation:
National Astronomical Observatory The Graduate University for Advanced Studies Mitaka, Tokyo 181-8588, Japan Department of Astronomy, University of Tokyo Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the primordial nucleosynthesis in lepton asymmetric Universe models. In order to better estimate the universal baryon-mass density parameter ωb, we try to remove the uncertainty from the theoretical prediction of primordial 7Li abundance. We propose a new method to determine the primordial 7Li by the use of isotopic abundance ratio 7Li/6Li in the interstellar medium which exhibits the minimum effects of the stellar processes.

Type
4. Lithium Abundances
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Bahcall, N.A., Lubin, L.M., & Dorman, V. 1995, ApJ 447, L81.CrossRefGoogle Scholar
Brune, C.R., Kavanagh, R.W., & Rolfs, C. 1994, PR C50, 2205.Google Scholar
Burles, S., & Tytler, D. 1998a, ApJ 499, 699; 1998b, ApJ 507, 732.CrossRefGoogle Scholar
Copi, C.J., Schramm, D.N., & Turner, M.S. 1995, ApJ 455, 95.Google Scholar
Dearborn, D.S.P., Steigman, G., & Tosi, M. 1996, ApJ 465, 887.CrossRefGoogle Scholar
Deliyannis, P., et al. 1998, ApJ 498, L147.Google Scholar
Ferlet, R., & Dennefeld, M. 1983, ApJ 409, L61.Google Scholar
Izatov, Y.I., Thuan, T.X., & Lipovetsky, V.A. 1994, ApJ 435, 647.CrossRefGoogle Scholar
Kajino, T., & Orito, M. 1998, Nucl. Phys. A629, 538.CrossRefGoogle Scholar
Kajino, T., Orito, M., Sakai, K., & Deliyannis, P.C. 2000, in preparation.Google Scholar
Kawanomoto, S., Ando, H., Kajino, T., & Suzuki, T.-K. 2000, in preparation.Google Scholar
Kurucz, R.L. 1995, ApJ 452, 102.Google Scholar
Lemoine, M., et al. 1993, A&A 269, 469; 1995, A&A 298, 879.Google Scholar
Meyer, D.M., Hawkins, I., & Wright, E.L. 1993, ApJ 409, L61.Google Scholar
Olive, K., Steigman, G., & Walker, T. 1999, Phys. Rep., in press.Google Scholar
Peimbert, M., & Peimbert, A. 2000, astro-ph/0002120.Google Scholar
Perlmutter, S., et al. (Supernova Cosmology Project Team) 1999, ApJ 517, 565.CrossRefGoogle Scholar
Pinsonneault, M.H., Deliyannis, C.P., & Demarque, P. 1992, ApJS 78, 179.CrossRefGoogle Scholar
Rugers, M., & Hogan, C.J. 1996, ApJ 459, L1.Google Scholar
Riess, A., et al. (High-z Supernova Search Team) 1998, AJ 116, 1009.Google Scholar
Rood, R. et al. 1995, Light Element Abundances, (ed. Crane, P., Springer) 201.CrossRefGoogle Scholar
Ryan, S., Beers, T., Olive, K., Fields, B., & Norris, J. 2000a, ApJ 530, L57.Google Scholar
Ryan, S.G., Kajino, T., Beers, T.C., Suzuki, T.-K., Romano, D., Matteucci, F., & Rosolankova, K. 2000b, ApJ, submitted.Google Scholar
Savage, B.D., & Sembach, K.R. 1996, ARA&A 34, 279.Google Scholar
Smith, M.S., Kawano, L.H., & Malaney, R.A. 1993, ApJS 85, 219.Google Scholar
Suzuki, T.-K., Yoshii, Y., & Kajino, T. 1999, ApJ 522, L125.Google Scholar
Thuan, T.X. 2000, in this volume.Google Scholar
Wannier, P.G. 1980, ARA&A 18, 366.Google Scholar
White, S.D.M., et al. 1993, Nature 366, 429.CrossRefGoogle Scholar