Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T08:52:21.312Z Has data issue: false hasContentIssue false

Molecular Gas & Star Formation in Nearby Galaxies

Published online by Cambridge University Press:  23 September 2016

Tony Wong
Affiliation:
CSIRO Australia Telescope National Facility, PO Box 76, Epping NSW 1710, Australia; and School of Physics, University of New South Wales, Sydney NSW 2052, Australia
Michele D. Thornley
Affiliation:
Department of Physics, Bucknell University, Lewisburg, PA 17837, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review recent observations of molecular gas in nearby galaxies and their implications for the star formation law on large (> 1 kpc) scales. High-resolution data provided by millimetre interferometers are now adding to the basic understanding that has been provided by single-dish telescopes. In particular, they confirm the good correlation between star formation rate (SFR) and molecular gas surface densities, while at the same time revealing a greater degree of heterogeneity in the CO distribution. Galaxies classified as SAB or SB tend to show radial CO profiles that peak sharply in the inner ∼20″, indicative of bar-driven inflow. The observed Schmidt law index of ≍1.5 may result from a nearly linear relation between SFR and H2 mass coupled with a modest dependence of the molecular gas fraction on the total gas density. The normalisation of the Schmidt law, giving the characteristic timescale for star formation, may stem from the generic nature of interstellar turbulence.

Type
Part 3: Extra-Galactic Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Alton, P. B., Bianchi, S., Richer, J., Pierce-Price, D., & Combes, F. 2002, A&A, 388, 446 Google Scholar
Ballesteros-Paredes, J. & Mac Low, M. 2002, ApJ, 570, 734 CrossRefGoogle Scholar
Crosthwaite, L. P., Turner, J. L., Hurt, R. L., Levine, D. A., Martin, R. N., & Ho, P. T. P. 2001, AJ, 122, 797 CrossRefGoogle Scholar
Crosthwaite, L. P., Turner, J. L., Buchholz, L., Ho, P. T. P., & Martin, R. N. 2002, AJ, 123, 1892 CrossRefGoogle Scholar
Downes, D. & Solomon, P. M. 1998, ApJ, 507, 615 CrossRefGoogle Scholar
Elmegreen, B. G. 1993, ApJ, 411, 170 CrossRefGoogle Scholar
Elmegreen, B. G. 2002, ApJ, 577, 206 CrossRefGoogle Scholar
Helfer, T. T., Thornley, M. D., Regan, M. W., Wong, T., Sheth, K., Vogel, S. N., Blitz, L., & Bock, D. C.-J. 2003, ApJS, 145, 259 CrossRefGoogle Scholar
Kennicutt, R. C. 1998, ApJ, 498, 541 CrossRefGoogle Scholar
Kewley, L. J., Geller, M. J., Jansen, R. A., & Dopita, M. A. 2002, AJ, 124, 3135 CrossRefGoogle Scholar
Kravtsov, A. V. 2003, ApJ, 590, L1 CrossRefGoogle Scholar
Lupton, R. H., Gunn, J. E., & Szalay, A. S. 1999, AJ, 118, 1406 CrossRefGoogle Scholar
Regan, M. W., Thornley, M. D., Helfer, T. T., Sheth, K., Wong, T., Vogel, S. N., Blitz, L., & Bock, D. C.-J. 2001, ApJ, 561, 218 CrossRefGoogle Scholar
Rownd, B. K. & Young, J. S. 1999, AJ, 118, 670 CrossRefGoogle Scholar
Sakamoto, K., Okumura, S. K., Ishizuki, S., & Scoville, N. Z. 1999, ApJ, 525, 691 CrossRefGoogle Scholar
Schmidt, M. 1959, ApJ, 129, 243 CrossRefGoogle Scholar
Sheth, K., Vogel, S. N., Regan, M. W., Teuben, P. J. T., Harris, A. I., Thornley, M. D., & Helfer, T. T. 2004, ApJ, submitted Google Scholar
Solomon, P. M., Downes, D., Radford, S. J. E., & Barrett, J. W. 1997, ApJ, 478, 144 CrossRefGoogle Scholar
Thornley, M. D., Spohn-Larkins, C. J. L., Regan, M. W., & Sheth, K. 2002, BAAS, 34, 1117 Google Scholar
Tumlinson, J. et al. 2002, ApJ, 566, 857 CrossRefGoogle Scholar
Wada, K. & Norman, C. A. 2001, ApJ, 547, 172 CrossRefGoogle Scholar
Wong, T. & Blitz, L. 2002, ApJ, 569, 157 CrossRefGoogle Scholar
Young, J. S. et al. 1995, ApJS, 98, 219 CrossRefGoogle Scholar
Young, J. S., Allen, L., Kenney, J. D. P., Lesser, A., & Rownd, B. 1996, AJ, 112, 1903 CrossRefGoogle Scholar