Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:34:00.088Z Has data issue: false hasContentIssue false

Molecular Gas and Star Formation in the NGC 3077 Tidal Arm

Published online by Cambridge University Press:  26 May 2016

Fabian Walter
Affiliation:
NRAO, P.O. Box O, Socorro, NM 87801, USA
Crystal Martin
Affiliation:
UC Santa Barbara, Santa Barbara, CA 93106-9530, USA
Jürgen Ott
Affiliation:
CSIRO, ATNF, P.O. Box 76, Epping NSW 1710, Australia
Andreas Heithausen
Affiliation:
University of Bonn, Auf dem Hügel 71, 53121 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report the discovery of extended star formation in the prominent tidal arms near NGC 3077 (member of the M 81 triplet). 36 faint compact star forming regions were identified, covering an area of 4 × 6 kpc2. HII regions are only found near the southern rim of the tidal HI arm where the HI column density reaches values above 1 × 1021 cm−2. This threshold is very similar to what is found in ‘normal’ galactic environments. We derive a total star formation rate of 2.6 × 10−3M yr−1 in the tidal feature. We also present the first high-resolution observations of molecular gas in this region. The molecular gas emission can be separated into at least 5 distinct complexes most of which do not coincide with sites of star formation. The reservoir of neutral and molecular gas in the tidal arm is huge (~5 × 108M); star formation may continue at the given rate for a Hubble time. We conclude that wide-spread low-level star formation may be a common phenomenon in tidal HI tails, however it will be difficult to detect in interacting systems that are further away.

Type
Part 4. Recycling
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Brouillet, N., Baudry, A., Combes, F., Kaufman, M., & Bash, F. 1991, A&A, 242, 35.Google Scholar
Bureau, M. & Carignan, C., 2002, AJ, 123, 1316.Google Scholar
Devereux, N., Duric, N., & Scowen, P. A. 1997, AJ, 113, 236.Google Scholar
Duc, P.-A., Brinks, E., Springel, V., Pichardo, B., Weilbacher, P., & Mirabel, I. F. 2000, AJ, 120, 1238.Google Scholar
Freedman, W.L., Hughes, S.M., Madore, B.F., Mould, J.R., Lee, M.G., Stetson, P., Kennicutt, R.C., Turner, A., Ferrarese, L., Ford, H., Graham, J.A., Hill, R., Hoessel, J.G., Huchra, J., Illingworth, G.D. 1994, ApJ, 427, 628.Google Scholar
Heithausen, A. & Walter, F. 2000, A&A, 361, 500.Google Scholar
Hunsberger, S. D., Charlton, J. C., & Zaritsky, D. 1996, ApJ, 462, 50.Google Scholar
Hunter, D. A., Hunsberger, S. D., & Roye, E. W. 2000, ApJ, 542, 137.Google Scholar
Karachentsev, I. D., Karachentseva, V. E., & Boerngen, F. 1985, MNRAS, 217, 731.Google Scholar
Kennicutt, R. C. 1983, ApJ, 272, 54.Google Scholar
Leitherer, C. et al. 1999, ApJS, 123, 3.Google Scholar
Miller, B. W. & Hodge, P. 1994, ApJ, 427, 656.Google Scholar
Mirabel, I. F., Dottori, H., & Lutz, D. 1992, A&A, 256, L19.Google Scholar
Okazaki, T. & Taniguchi, Y. 2000, ApJ, 543, 149.Google Scholar
Rand, R. J. 1993, ApJ, 410, 68.Google Scholar
Sakai, S., & Madore, B., 2001, ApJ, 555, 280.Google Scholar
Sharina, M. E. 1991, Soviet Astronomy Letters, 17, 383.Google Scholar
Thompson, M. & Donner, K. J. 1993, A&A, 272, 153.Google Scholar
Yun, M. S., Ho, P. T. P., Brouillet, N., & Lo, K. Y. 1993, in Evolution of Galaxies and their Environment, 253.Google Scholar
Yun, M., Ho, P. & Lo, K.Y., 1994, Nature, 372, 530.Google Scholar
Walter, F. & Brinks, E. 1999, AJ, 118, 273.Google Scholar
Walter, F. & Heithausen, A. 1999, ApJ, 519, L69.Google Scholar
Walter, F., Weiss, A., Martin, C., Scoville, N., 2002, AJ, 123, 255.Google Scholar
Yun, M. S., Ho, P. T. P., & Lo, K. Y. 1994, Nature, 372, 530.Google Scholar