Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T10:55:42.521Z Has data issue: false hasContentIssue false

Models of Gas-Grain Chemistry in Star-forming Regions

Published online by Cambridge University Press:  25 May 2016

Eric Herbst*
Affiliation:
Departments of Physics and Astronomy, The Ohio State University, Columbus, OH 43210, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is difficult if not impossible to explain the abundances of assorted interstellar molecules in both the gaseous and condensed phases without the use of grain chemistry. Unfortunately, the chemistry occurring on grains is not well understood because of a variety of uncertainties including the nature, size, and shape of dust particles, the binding energies of key species, the dominant mechanism of surface chemistry, and the correct mathematical treatment of surface processes. Still, intrepid astrochemists have used granular chemistry in chemical models of an assortment of sources including cold clouds, protostellar disks, and hot cores. Indeed, the dominant explanation of the saturated gas-phase molecules observed in hot cores involves grain chemistry during an earlier, low temperature phase. Although gas-grain models have elucidated major features of the chemistry, much more work remains to be accomplished before they can be used to help characterize the physical conditions in star-forming regions and their temporal variations.

Type
Part 2. Chemistry in High-Mass Star-Forming Regions
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Aikawa, Y. & Herbst, E. 1999, ApJ, 526, 314 CrossRefGoogle Scholar
Allen, M. & Robinson, G.W. 1977, ApJ, 212, 396 CrossRefGoogle Scholar
Bergin, E.A., Neufeld, D.A., & Melnick, G.J. 1999, ApJ, 510, L145 CrossRefGoogle Scholar
Blake, G.A., Sutton, E.C., Masson, C.R., & Phillips, T.G. 1987, ApJ, 315, 621 CrossRefGoogle Scholar
Brown, P.D., Charnley, S.B., & Millar, T.J. 1988, MNRAS, 231, 409 CrossRefGoogle Scholar
Brown, P.D. & Millar, T.J. 1989a, MNRAS, 237, 661 CrossRefGoogle Scholar
Brown, P.D. & Millar, T.J. 1989b, MNRAS, 240P, 25 CrossRefGoogle Scholar
Caselli, P., Hasegawa, T.I., & Herbst, E. 1993, ApJ, 408, 548 CrossRefGoogle Scholar
Caselli, P., Hasegawa, T.I., & Herbst, E. 1998, ApJ, 495, 309 CrossRefGoogle Scholar
Charnley, S.B. 1997, in Astrochemical and Biochemical Origins and the Search for Life, eds. Bowyer, S. & Wertheimer, D. (Bologna: Editrice Compositori), 89 Google Scholar
Charnley, S.B. 1998, ApJ, 509, L121 CrossRefGoogle Scholar
Charnley, S.B., Kress, M.E., Tielens, A.G.G.M., & Millar, T.J. 1995, ApJ, 448, 232 CrossRefGoogle Scholar
Charnley, S.B., Tielens, A.G.G.M., & Millar, T.J. 1992, ApJ, 399, L71 CrossRefGoogle Scholar
Charnley, S.B., Tielens, A.G.G.M., & Rodgers, S.D. 1997, ApJ, 482, L203 CrossRefGoogle Scholar
d'Hendecourt, L.B., Allamandola, L.J., & Greenberg, J.M. 1985, A&A, 152, 130 Google Scholar
Hasegawa, T.I. & Herbst, E. 1993a, MNRAS, 261, 83 CrossRefGoogle Scholar
Hasegawa, T.I. & Herbst, E. 1993b, MNRAS, 263, 589 CrossRefGoogle Scholar
Hasegawa, T.I., Herbst, E., & Leung, C.M. 1992, ApJS, 82, 167 CrossRefGoogle Scholar
Hiroaka, K., et al. 1994, Chem. Phys. Lett, 229, 408 CrossRefGoogle Scholar
Hiraoka, K., Miyagoshi, T., Takayama, T., Yamamoto, K., & Kihara, Y. 1998, ApJ, 498, 710 CrossRefGoogle Scholar
Irvine, W.M., Goldsmith, P.F., & Hjalmarson, Å. 1987, in Interstellar Processes, eds. Hollenbach, D.J. & Thronson, H.A. Jr. (Dordrecht: Reidel), 561 Google Scholar
Katz, N., Furman, I., Biham, O., Pirronello, V., & Vidali, G. 1999, ApJ, 522, 305 CrossRefGoogle Scholar
Lee, H.-H., Bettens, R.P. A., & Herbst, E. 1996, A&AS, 119, 111 Google Scholar
Millar, T.J. & Hatchell, J. 1998, Faraday Discussions, 109, 15 CrossRefGoogle Scholar
Millar, T.J., Herbst, E., & Charnley, S.B. 1991, ApJ, 369, 147 CrossRefGoogle Scholar
Pickles, J.B. & Williams, D.A. 1977, Ap&SS, 52, 443 Google Scholar
Schutte, W.A. 1999, in Laboratory Astrophysics & Space Research, eds. Ehrenfreund, P., Krafft, K., Kochan, H., & Pirronello, V. (Dordrecht: Kluwer), 69 CrossRefGoogle Scholar
Shalabiea, O.M. & Greenberg, J.M. 1995, A&A, 296, 779 Google Scholar
Shalabiea, O.M., Caselli, P., & Herbst, E. 1998, ApJ, 502, 652 CrossRefGoogle Scholar
Snyder, L.E., Kuan, Y.-J., & Miao, Y. 1994, in The Structure and Content of Molecular Clouds, eds. Wilson, T.L. & Johnston, K.J. (New York: Springer-Verlag), 187 Google Scholar
Terzieva, R. & Herbst, E. 1998, ApJ, 501, 207 CrossRefGoogle Scholar
Tielens, A.G.G.M. 1993, in Dust and Chemistry in Astronomy, eds. Millar, T.J. & Williams, D.A. (London: IOP Publishing), 103 Google Scholar
Tielens, A.G.G.M. & Allamandola, L.J. 1987, in Interstellar Processes, eds. Hollenbach, D.J. & Thronson, H.A. (Dordrecht: Reidel), 397 CrossRefGoogle Scholar
Tielens, A.G.G.M. & Hagen, W. 1982, A&A, 114, 245 Google Scholar
Turner, B.E. 1998, ApJ, 501, 731 CrossRefGoogle Scholar
Viti, S. & Wiliams, D.A. 1999, MNRAS, 305, 755 CrossRefGoogle Scholar
Wagenblast, R., Williams, D.A., Millar, T.J., & Nejad, L.A.M. 1993, MNRAS, 260, 420 CrossRefGoogle Scholar
Watson, W.D. & Salpeter, E.E. 1972, ApJ, 175, 659 CrossRefGoogle Scholar
Willacy, K., Klahr, H.H., Millar, T.J., & Henning, Th. 1998, A&A, 338, 995 Google Scholar
Williams, D.A. 1993, in Dust and Chemistry in Astronomy, eds. Millar, T.J. & Williams, D.A. (London: IOP Publishing), 143 Google Scholar
Williams, D.A. 1998, Faraday Discussions, 109, 1 CrossRefGoogle Scholar
Wright, M., Sandell, G., Wilner, C.J., & Plambeck, R.L. 1992, ApJ, 393, 225 CrossRefGoogle Scholar
Whittet, D.C.B. 1993, in Dust and Chemistry in Astronomy, eds. Millar, T.J. & Williams, D.A. (London: IOP Publishing), 9 Google Scholar