Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:48:26.630Z Has data issue: false hasContentIssue false

Models for Compact Pulsing X-Ray Sources

Published online by Cambridge University Press:  14 August 2015

Jeremiah P. Ostriker
Affiliation:
Princeton University Observatory, Princeton, N.J., U.S.A.
Kris Davidson
Affiliation:
Princeton University Observatory, Princeton, N.J., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cen X-3 is probably a neutron star, releasing the infall energy of accreted matter. Sufficient material for accretion will be provided by a conventional stellar wind from its more massive companion star. That star is not likely to rotate synchronously; therefore a ‘Roche lobe’ analysis of the eclipses is not valid. A ‘tidal lobe’ analysis allows the neutron star to have a mass of the order of one solar mass. Overflow of the ‘Roche lobe’ is neither necessary as a source of mass nor probable in view of the observed stellar line widths of the two identified X-ray companions.

The mass flow onto the condensed star is very small in all cases. It is limited, for an object of m solar masses by the Eddington Limiting Luminosity to ac < 10–7.4m(M yr−1), which limit applies even if the accreting object contacts or traverses its companion star.

The observed 4.84 s rotation period of the Cen X-3 neutron star is very simply explained as the critical value where a centrifugal barrier regulates the rate of infall to the surface. The X-ray spectrum is understood as blackbody radiation coming from a well-defined area near each magnetic pole of the neutron star.

Type
Part II: Theoretical Models for Compact Sources
Copyright
Copyright © Reidel 1973 

References

Beals, C. S.: 1951, Publ. Dom. Astrophys. Obs. 9, 1.Google Scholar
Bolton, C.: 1971, Bull. Am. Astron. Soc. 3, No. 4.Google Scholar
Bondi, H. and Hoyle, F.: 1944, Monthly Notices Roy. Astron. Soc. 104, 273.Google Scholar
Carruthers, G. R.: 1968, Astrophys. J. 151, 269.Google Scholar
Eddington, A.: 1926, The Internal Constitution of the Stars, (reprinted by Dover, New York, 1959).Google Scholar
Gott, J. R., Gunn, J. E., and Ostriker, J. P.: 1970, Astrophys. J. 160, L91.Google Scholar
Gribben, J.: 1971, Nature 233, 19.Google Scholar
Hiltner, W. A., Werner, J., and Osmer, P.: 1972, Astrophys. J. Letters, (in press).Google Scholar
Jeans, J. H.: 1919, Problems of Cosmogony and Stellar Dynamics, Cambridge Univ. Press.Google Scholar
Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge Univ. Press.Google Scholar
Leach, R. and Ruffini, R.: 1972, (preprint).Google Scholar
Lucy, L. B. and Solomon, P. M.: 1970, Astrophys. J. 159, 879.Google Scholar
Morton, D. C.: 1967, Astrophys. J. 147, 1017.CrossRefGoogle Scholar
Morton, D. C.: 1969, Astron. Space Sci. 3, 117.Google Scholar
Ostriker, J. P.: 1968, Nature 217, 1227.Google Scholar
Ostriker, J. P., Rees, M., and Silk, J.: 1970, Astrophys. Letters 6, 179.Google Scholar
Ostriker, J. P. and Tassoul, J.-L.: 1968, Nature 219, 577.Google Scholar
Salpeter, E. E.: 1972, this volume, p. 135.CrossRefGoogle Scholar
Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H., and Giacconi, R.: 1972, Astrophys. J. 172, L79.Google Scholar
Tanabaum, H., Gursky, H., Kellogg, E. M., Levinson, R., Schreier, E., and Giacconi, R.: 1972, Astrophys. J. Letters, (in press).Google Scholar
van den Heuvel, E. P. J.: 1970, in Slettebak, A. (ed.), Stellar Rotation, D. Reidel Publ. Co., Dordrecht-Holland, p. 178.CrossRefGoogle Scholar
van den Heuvel, E. P. J. and Heise, J.: 1972, Nature, (in press).Google Scholar
Webster, B. L. and Murdin, P.: 1972, Nature 235, 37.Google Scholar
Wilson, R. E.: 1972, Astrophys. J. 174, L27.Google Scholar
Zel'dovich, Ya. B. and Novikov, I. D.: 1964, Sov. Phys. Dokl. 9, 246.Google Scholar
Zel'dovich, Ya. B. and Novikov, I. D.: 1971, Relativistic Astrophysics, vol. 1, Univ. of Chicago Press, Chicago, Chap. 13.Google Scholar