Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T22:41:51.907Z Has data issue: false hasContentIssue false

A Microscopic Approach to Investigate Bacteria under In-Situ Conditions in Arctic Lake Ice: Initial Comparisons to Sea Ice

Published online by Cambridge University Press:  19 September 2017

Karen Junge
Affiliation:
School of Oceanography, Astrobiology Program, University of Washington, Mail-box 357940, Seattle, WA 98195, U.S.A.
Jody W. Deming
Affiliation:
School of Oceanography, Astrobiology Program, University of Washington, Mail-box 357940, Seattle, WA 98195, U.S.A.
Hajo Eicken
Affiliation:
Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Dr., P.O. Box 757320, Fairbanks, AK 99775-7320, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To better understand constraints on bacteria at extremely low temperatures in ice, we describe here the adaptation of methods previously developed for sea ice to high magnification imaging of bacteria within fluid inclusions of Arctic lake ice under insitu conditions. Bacterial staining procedures, using the DNA-specific fluorescent stain DAPI, epifluorescence microscopy and image analysis were applied to lake-ice sections at in situ temperature (-5°C). Abundances of total, attached, free-living and metabolically active lake-ice bacteria were also determined from samples melted at 0°C using the fluorescent stains DAPI and CTC. Initial results indicate that, compared to sea ice at the same in situ temperature, lake ice contains fewer and more isolated liquid inclusions, limiting transport of fluids and motion of bacteria. Metabolically active cells were found in all ice samples (0.1 to 2.0% of the total counts), but on average less than in sea ice. Up to 50% of the total bacterial community were found to be associated with particles > 3 μm in size; of the metabolically active cells, a smaller fraction may be attached than in sea ice. Our results expand the spectrum of information available on bacteria in ice on a scale relevant to the organism and provide insight into characteristics of frozen microbial habitats on Earth and perhaps elsewhere in the Universe.

Type
Archaea
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Bahr, M., Hobbie, J. E., & Sogin, M. L. 1996, Aquat. Microb. Ecol., 11, 271 Google Scholar
Carpenter, E. J., Senjie, L., & Capone, D. G. 2000, Appl. Environ. Microbiol., 66, 4514 Google Scholar
Christner, B. R., Mosley-Thompson, E., Thompson, L. G., & Reeve, J. N. 2001, Environ. Microbiol, 3, 570 CrossRefGoogle Scholar
Chyba, C. F., & Phillips, C. B. 2001, Proc. Natl. Acad. Sci. U.S.A., 98, 801 CrossRefGoogle Scholar
Deming, J. W. 2002, Curr Opin Microbiol, 5, 301 Google Scholar
Eicken, H. 2003, in Sea Ice – Its Physics, Chemistry, Biology and Geology, ed. Thomas, D. & Dieckmann, G., (London: Blackwell Scientific), 22 Google Scholar
Garrison, D. L., & Buck, K. R. 1986, Pol. Biol, 6, 237 Google Scholar
Gordon, D. A., Priscu, J., & Giovannoni, S. 2000, Microb. Ecol., 39, 197 Google Scholar
Haglund, A. L., Törnblom, E., Boström, B., & Tranvik, L. 2002, Microb. Ecol., 43, 232 Google Scholar
Junge, K., Gosink, J. J., Hoppe, H.-G., & Staley, J. T. 1998, Syst. Appl. Microbiol., 21, 306 Google Scholar
Junge, K., Krembs, C., Deming, J. W., Stierle, A., & Eicken, H. 2001a, Ann. Glaciol., 33, 304 Google Scholar
Junge, K., Eicken, H., & Deming, J. W. 2001b, in Abstracts of the 101th General Meeting of the American Society for Microbiology, Washington, DC. at the American Society for Microbiology Annual Meeting, Orlando, FL. N-201, 524 Google Scholar
Junge, K., Imhoff, J.F., Staley, J. T., & Deming, J.W. 2002, Microb. Ecol., 43, 315 Google Scholar
Junge, K., Eicken, H., & Deming, J. W. 2003, submitted to Appl. Environ. Microbiol., in press Google Scholar
Karl, D. M., Bird, D. F., Bjoekman, K., Houlihan, T., Shackelford, R., & Tupas, L. 1999, Science, 286, 2144 Google Scholar
Panzenboeck, M., Moebes-Hansen, B., Albert, R., & Herndl, G. J. 2000, Aquat. Microb. Ecol., 21, 265 CrossRefGoogle Scholar
Pernthaler, J., Glockner, F. O., Unterholzner, S., Alfreider, A., Psenner, R., & Amann, R. 1998, Appl. Environ. Microbiol., 64, 4299 CrossRefGoogle Scholar
Pomeroy, L. R., & Wiebe, W. J. 2001, Aquat. Microb. Ecol., 23, 187 Google Scholar
Porter, K. G., & Feig, Y. S. 1980, Limnol. Oceanogr., 25, 943 Google Scholar
Price, P. B. 2000, Proc. Natl. Acad. Sci. U.S.A., 97, 1247 Google Scholar
Priscu, J. C., et al. 1998, Science, 280, 2095 Google Scholar
Priscu, J. C., et al. 1999, Science, 286, 2141 CrossRefGoogle Scholar
Psenner, R., & Sattler, B. 1998, Science, 280, 2073 Google Scholar
Rivkina, E. M., Friedmann, E. I., McKay, C. P., & Gilichinsky, D. A. 2000, Appl. Environ. Microbiol., 66, 3230 CrossRefGoogle Scholar
Sherr, B. F., del Giorgio, P., & Sherr, E. B. 1999, Aquat. Microb. Ecol., 18, 117 CrossRefGoogle Scholar
Smith, E. M. 1998, Aquat. Microb. Ecol., 16, 27 Google Scholar
Simmons, G. M., Vestal, J. R., & Wharton, R. A. Jr. 1993, in Antarctic Microbiology, ed Friedmann, E. I., (New York: Wiley), 634 Google Scholar
Ward, B. B., & Priscu, J. C. 1997, Hydrobio., 347, 57 Google Scholar