Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-09T13:32:40.076Z Has data issue: false hasContentIssue false

Microprobe two-step laser mass spectrometry as an analytical tool for meteoritic samples

Published online by Cambridge University Press:  25 May 2016

Simon J. Clemett
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080 USA
Richard N. Zare
Affiliation:
Department of Chemistry, Stanford University, Stanford, CA 94305-5080 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Microprobe two-step laser mass spectrometry (μL2MS) is a new mass spectrometric method in which the two essential steps of any mass spectrometric analysis, vaporization and ionization, are carried out using two independent laser sources. In the first step, the output of a pulsed infrared laser is focused on the sample to cause rapid heating in the spot area illuminated, which is typically 40 μm by 40 μm. In the second step, the output of a pulsed ultraviolet laser causes (1+1) resonance-enhanced multiphoton ionization (REMPI) of those desorbed neutral molecules that (1) are able to absorb this UV wavelength and (2) whose ionization potential is less than the energy of two photons of this UV wavelength. The resulting ions are then mass analyzed in a reflectron time-of-flight apparatus. Under suitable conditions fragmentation can be avoided in both the vaporization and ionization steps so that μL2MS can be applied to the analysis of a mixture of molecules. Applications of μL2MS to meteorite samples are presented as a means of detecting trace amounts of certain organic molecules present in complex materials without prior sample preparation, extraction, purification, and separation steps. Moreover, this analysis can be carried out with micrometer spatial resolution so that in favorable cases the presence or absence of certain molecules can be correlated to mineralogical features of the sample.

Type
Basic Molecular Processes
Copyright
Copyright © Kluwer 1997 

References

Bialkowski, S.E. 1987, Rev. Sci. Instrum. 58, 2338.CrossRefGoogle Scholar
Clemett, S. J. 1996, , .Google Scholar
Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D., Walker, R.M. 1993, Science 262, 721725.Google Scholar
Cowin, J.P., Auerbacj, Becker, C., and Wharton, L. 1978, Surface Science 78, 6992.Google Scholar
Hahn, J. H. 1988, , .Google Scholar
Hahn, J. H., Zenobi, R., Bada, J. L., Zare, R. N. 1988, Science 239, 15231525.Google Scholar
Kovalenko, L.J., Philippoz, J.M., Bucenell, J.R., Zenobi, R., Zare, R.N. 1991, Space Science Reviews 56, 191195.Google Scholar
Kovalenko, L.J., Maechling, C.R., Clemett, S.J., Philippoz, J.M. Zare, R.N., Alexander, C. M. O'D. 1992, Anal. Chem. 64, 682690.Google Scholar
McKay, D.S., Gibson, E.K. Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N. 1996, Science 273 924930.Google Scholar
Maechling, C. R. 1995, , .Google Scholar
Maechling, C.R., Clemett, S. J., Zare, R.N. 1995, Chem. Phys. Lett. 241, 301310.Google Scholar
Maechling, C.R., Clemett, S.J., Engelke, F., Zare, R.N. 1996, J. Chem. Phys. 104 87688776.Google Scholar
Nettesheim, S., Zenobi, R. 1996, Chem. Phys. Lett. 255, 3944 and references therein.Google Scholar
Pappas, D.L., Hrubowchak, D.M., Ervin, M.H., Winograd, N. 1989, Science 243, 6466 (1989).CrossRefGoogle Scholar
Pering, K.L., Ponnamperuma, C. 1971, Science 173, 237239.Google Scholar
Shibanov, A.N. 1985, Laser Analytical Spectrochemistry Letokhov, V. S., Ed. (Adam Hilger, Bristol).Google Scholar
Thomas, K.L., et al. 1995b, Lunar and Planetary Science XXVI, 14091410.Google Scholar
Thomas, K.L., Blanford, G.E., Clemett, S.J., Flynn, G. J., Keller, L.P., Klock, W., Maechling, C.R., McKay, D.S., Messenger, S., Nier, A.O., Schlutter, D.J., Sutton, S.R., Warren, J.L. and Zare, R.N. 1995a, Geochimica et Cosmochimica Acta 59, 27972815.CrossRefGoogle Scholar
Voumard, P., Zenobi, R., Zhu, Q. 1994, Surf. Sci. 360, 307309.Google Scholar
Voumard, P., Zenobi, R., Zhu, Q. 1995, J. Phys. Chem. 99 11722.CrossRefGoogle Scholar
Wiley, W.C., McLaren, I.H. 1955, Rev. Sci. Instrum. 26, 11501157.Google Scholar
Winograd, N., Baxter, J.P., Kimock, F.M. 1982, Chem. Phys. Lett. 82, 581.Google Scholar
Zenobi, R. 1990, , .Google Scholar
Zenobi, R., Philippoz, J.M., Buseck, P.R., Zare, R.N. 1989, Science 246, 10261029.Google Scholar
Zenobi, R., Zare, R.N. 1991, in Advances in Multi-Photon Processes and Spectroscopy, Vol. 7 (World Scientific Publishing), pp. 1167.Google Scholar
Zenobi, R., Philippoz, J.M., Zare, R.N., Wing, M.R., Bada, J.L., Marti, K. 1992, Geochimica et Cosmochimica Acta 56, 28992905.Google Scholar