Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:28:17.907Z Has data issue: false hasContentIssue false

Metallicity Evolution of Damped Lyman-α Systems

Published online by Cambridge University Press:  13 May 2016

Sandra Savaglio*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

According to Pei, Fall, & Hauser (1999), the global metallicity evolution of the Universe can be represented by the ratio of the total metal content to the total gas content measured in damped Lyman–α (DLA) systems (the “column density weighted metallicity” à la Pettini). To minimize dust obscuration effects, a DLA sample with negligible dust content is considered, namely, 50 DLAs with log NHI < 20.8. The global metallicity found shows clear evidence of redshift evolution that goes from ~ 1/30 solar at z ~ 4.1 to solar at z ~ 0.4. More generally, DLAs with measured heavy elements probe the ISM of high redshift galaxies. The whole sample collected from the literature contains 75 DLAs. The metallicity is calculated adopting for the dust correction the most general method used so far, based on models of the ISM dust depletions in the Galaxy. The intrinsic metallicity evolution of DLA galaxies is d log ZDLA/dz = −0.33 ± 0.06.

Type
Research Article
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Boissé, P., Le Brun, V., Bergeron, J., & Deharveng, J.-M. 1998, A&A, 333, 841 Google Scholar
Cen, R., & Ostriker, J. P. 1999, ApJ, 519, L109 CrossRefGoogle Scholar
Fan, X., et al. 1999, AJ, 118, 1 Google Scholar
Le Brun, V., Bergeron, J., Boissé, P., & Deharveng, J.-M. 1997, A&A, 321, 733 Google Scholar
Lu, L., Sargent, W. L. W., Barlow, T. A., Churchill, C. W., & Vogt, S. S. 1996, ApJS, 107, 475 CrossRefGoogle Scholar
Madau, P., & Pozzetti, L. 2000, MNRAS, 312, L9 CrossRefGoogle Scholar
Mathlin, G. P., Baker, A. C., Churches, D. K., & Edmunds, M. G. 2000, MNRAS, in press, astro–ph/0009226 Google Scholar
Pei, Y. C., & Fall, S. M. 1995, ApJ, 454, 69 Google Scholar
Pei, Y. C., Fall, S. M., & Hauser, M. G. 1999, ApJ, 522, 604 Google Scholar
Pettini, M., Smith, L. J., Hunstead, R. W., & King, D. L. 1994, ApJ, 426, 79 CrossRefGoogle Scholar
Pettini, M., Smith, L. J., King, D. L., & Hunstead, R. W. 1997, ApJ, 486, 665 CrossRefGoogle Scholar
Pettini, M., Ellison, S. L., Steidel, C. C., & Bowen, D. V. 1999, ApJ, 510, 576 Google Scholar
Prochaska, J. X., & Wolfe, A. M. 1999, ApJS, 121, 369 Google Scholar
Prochaska, J. X., & Wolfe, A. M. 2000, ApJ, 533, L5 Google Scholar
Rao, S., & Turnshek, D. A. 1998, ApJ, 500, L115 Google Scholar
Rao, S., & Turnshek, D. A. 1999, ApJS, in press, astro–ph/9909164 Google Scholar
Savage, B. D., & Sembach, K. R. 1996, ARA&A, 34, 279 Google Scholar
Savaglio, S., Panagia, N., & Stiavelli, M. 2000, in ASP Conf. Series, Cosmic Evolution and Galaxy Formation (San Francisco: ASP), astro–ph/9912112 Google Scholar
Spitzer, L. 1978, Physical Processes in the Interstellar Medium (New York: John Wiley & Sons).Google Scholar
Vladilo, G., Bonifacio, P., Centurion, M., & Molaro, P. 2000, ApJ, in press, astro–ph/0005555 Google Scholar
Welty, D. E., Lauroesch, J. T., Blades, J. C., Hobbs, L. M., & York, D. G. 1997, ApJ, 489, 672 CrossRefGoogle Scholar
Wolfe, A. M., Turnshek, D. A., Smith, H. E., & Cohen, R. D. 1986, ApJS, 61, 249 Google Scholar